中文
Announcement
More
Progress in Chemistry 2007, Vol. 19 Issue (10): 1598-1605 Previous Articles   Next Articles

• Review •

Hydrogen Production from Sodium Borohydride

Xu Dongyan1**;Zhang Huamin2;Ye Wei2   

  • Received: Revised: Online: Published:
PDF ( 4632 ) Cited
Export

EndNote

Ris

BibTeX

The rapid development of the proton exchange membrane fuel cells technology in recent years has stimulated research in the low cost hydrogen production and high efficient hydrogen storage. Chemical hydrides such as NaBH4、KBH4、LiH、NaH have been tested as precursor materials for supplying hydrogen at ambient temperature. Among these chemical hydrides, sodium borohydride (NaBH4) provides a safe and prac-tical mean of producing hydrogen, making it as an attractive subject of hydrogen production for proton ex-change membrane fuel cells. This paper introduces the basic principle of hydrogen production from sodium borohydride and reviews comprehensively the recent research progress of the hydrolysis catalysts and reaction kinetics. The commercial foreground of hydrogen production from borohydride is also proposed.

CLC Number: 

[ 1 ] Costamagna P , Srinivasan S. J . Power Sources , 2001 , 102(1/2) : 253 —269
[ 2 ] Chalk S G, Miller J F , Wagner F W. J . Power Sources , 2000 ,86 (1/2) : 40 —51
[ 3 ] Ogston J M, Kreutz T G, Steinbugler M M. Fuel Cells Bull . ,2000 , 3 (16) : 5 —13
[ 4 ] Cowey K, Green KJ , Mepsted G O , et al . Curr. Opin. Solid State Mater. Sci . , 2004 , 8 (5) : 367 —371
[ 5 ] Ahluwalia R K, Wang X, Rousseau A , et al . J . Power Sources ,2004 , 130 (1/2) : 192 —201
[ 6 ] Bruijn F. Green Chem. , 2005 , 7 (3) : 132 —150
[ 7 ] Teagan W P , Bentley J , Barnett B. J . Power Sources , 1998 , 71(1/2) : 80 —85
[ 8 ] Ross D K. Vacuum, 2006 , 80 (10) : 1084 —1089
[ 9 ] Wee J H , Lee K Y, Kim S H. Fuel Process Technol . , 2006 , 87(9) : 811 —819
[10] Noh J S , Agarwal R K, Schwarz J A. J . Hydrogen Energy , 1987 ,12 (10) : 693 —700
[11] Strêbel R , Garche J , Moseley P T , et al . J . Power Sources ,2006 , 159 (2) : 781 —801
[12] Dillon A C , Jones K M, Bekkedahl T A , et al . Nature , 1997 ,386 : 377 —379
[13] Ye Y, Ahn C C , Witham C , et al . Appl . Phys. Lett . , 1999 , 74(16) : 2307 —2309
[14] Tamura T , Tominaga Y, Matumoto K, et al . J . Alloys Compd. ,2002 , 330/332 : 522 —525
[15] 许炜(Xu W) , 陶占良(Tao Z L) , 陈军(Chen J ) . 化学进展(Process in Chemistry) , 2006 , 18 (2/3) : 200 —210
[16] Ward C A , Stanga D , Pataki L , et al . J . Power Sources , 1993 ,41 (3) : 335 —352
[17] Bogdanovic B , Brand R A , Marjanovic A , et al . J . Alloys Compd. , 2000 , 302 (1/2) : 36 —58
[18] Gross KJ , Thomas GJ , Jensen C M. J . Alloys Compd. , 2002 ,330/332 : 683 —690
[19] Kong V C Y, Foulkes F R , Kirk D W, et al . Int . J . Hydrogen Energy , 1999 , 24 (7) : 665 —675
[20] Kojima Y, Suzuki K I , Kawai Y. J . Mater. Sci . , 2004 , 39 (6) :2227 —2229
[21] Wee J H. J . Power Sources , 2006 , 155 (2) : 329 —339
[22] 王恒秀(Wang H X) , 李莉(Li L) , 李晋鲁(Li J L) 等. 化工进展( Chemical Industry and Engineering Progress) , 2001 , 18(7) : 1 —4
[23] Kojima Y, Haga T. Int . J . Hydrogen Energy , 2003 , 28 (9) :989 —993
[24] Schlesinger H I , Brown H C , Finholt A E , et al . J . Am. Chem.Soc. , 1953 , 75 : 215 —219
[25] Kreevoy M M, Jacobson R W. Ventron Alembic , 1979 , 15 : 2 —3
[26] Aiello R , Sharp J H , Matthews M A. Int . J . Hydrogen Energy ,1999 , 24 (12) : 1123 —1130
[27] Brown H C , Brown C A. J . Am. Chem. Soc. , 1962 , 84 (8) :1493 —1495
[28] Amendola S C , Sharp-Goldman S L , Janjua M S , et al . J . Power Sources , 2000 , 85 (2) : 186 —189
[29] Amendola S C , Sharp-Goldman S L , Janjua M S , et al . Int . J .Hydrogen Energy , 2000 , 25 (10) : 969 —975
[30] 王涛(Wang T) , 张熙贵(Zhang X G) , 李巨峰(Li J F) 等. 燃料化学学报(Journal of Fuel Chemistry and Technology) , 2004 ,32 (6) : 723 —728
[31] Kojima Y, Suzuki K, Fukumoto K, et al . Int . J . Hydrogen Energy , 2002 , 27 (10) : 1029 —1034
[32] Wu C , Zhang H M, Yi B L. Catal . Today , 2004 , 93P95 : 477 —483
[33] Bai Y, Wu C , Wu F , et al . Mater. Lett . , 2005 , 60 (17/18) :2236 —2239
[34] Krishnan P , Yang T H , Lee W Y, et al . J . Power Sources ,2005 , 143 (1/2) : 17 —23
[35] Özkar S , Zahmakiran M. J . Alloys Compd. , 2005 , 404P406 :728 —731
[36] Zahmakiran M, ; zkar S. J . Mol . Catal . A: Chem. , 2006 , 258(1/2) : 95 —103
[37] Wu C , Wu F , Bai Y, et al . Mater. Lett . , 2005 , 59 (14/15) :1748 —1751
[38] Dong H , Yang H X, Ai X P , et al . Int . J . Hydrogen Energy ,2003 , 28 (10) : 1095 —1100
[39] Liu B H , Li Z P , Suda S. J . Alloys Compd. , 2006 , 415 (1/2) :288 —293
[40] KimJ H , Lee H , Han S C , et al . Int . J . Hydrogen Energy ,2004 , 29 (3) : 263 —267
[41] Jeong S U , Kim R K, Cho E A , et al . J . Power Sources , 2005 ,144 (2) : 129 —134
[42] Suda S , Sun Y M, Liu B H , et al . J . Applied Physics A , 2001 ,72 (2) : 209 —212
[43] Kojima Y, Suzuki K I , Kawai Y. J . Power Sources , 2006 , 155(2) : 325 —328
[44] Kojima Y, Suzuki K I , Fukumoto K, et al . J . Power Sources ,2004 , 125 (1) : 22 —26
[45] Kim J H , Kim K T , Kang Y M, et al . J . Alloys Compd. , 2004 ,379 (1/2) : 222 —227
[46] Xia Z T , Chan S H. J . Power Sources , 2005 , 152 : 46 —49
[47] Pinto A M F R , Falcao D S , Sliva R A , et al . Int . J . Hydrogen Energy , 2006 , 31 (10) : 1341 —1347
[48] Zhang Q , Smith G, Wu Y, et al . Int . J . Hydrogen Energy ,2006 , 31 (7) : 961 —965
[49] Ye W, Zhang H M, Xu D Y, et al . J . Power Sources , 2007 , 164(2) : 544 —548
[50] Shang Y, Chen R. Energy Fuels , 2006 , 20 (5) : 2142 —2148
[51] Kojima Y, Kawai Y, Nakanishi H , et al . J . Power Sources ,2004 , 135 (1/2) : 36 —41
[52] Gervasio D , Tasic S , Zenhausern F. J . Power Sources , 2005 ,149 : 15 —21
[53] Richardson B S , Birdwell J F , Pin F G, et al . J . Power Sources ,2005 , 145 : 21 —29
[54] 杨汉西( Yang H X) , 董华(Dong H) , 艾新平(Ai X P) . CN1 438 169A , 2003
[55] 王亚权(Wang Y Q) . CN 1 458 059A , 2003
[56] 潘相敏(Pan X M) , 马建新(Ma J X) . 天然气化工(Natural Gas Chemical Industry) , 2003 , 28(5) : 51 —55
[57] 王凤娥(Wang F E) . 电源技术( Chinese Journal of Power Sources) , 2006 , 30(1) : 79 —82
[58] Kojima Y, Haga T. Int . J . Hydrogen Energy , 2003 , 28 (9) :989 —993

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[5] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[6] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[7] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[8] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[9] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[10] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[11] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[12] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[13] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[14] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[15] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.