中文
Announcement
More
Progress in Chemistry 2007, Vol. 19 Issue (10): 1529-1536 Previous Articles   Next Articles

• Review •

The Dearomatizetion of Aromatic Compounds

Shirong Lu;Bo Peng;Ming Bao**   

  1. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116012,China
  • Received: Revised: Online: Published:
PDF ( 2258 ) Cited
Export

EndNote

Ris

BibTeX

Dearomatization reactions of arenes have been attracted considerable interest because they allow the use of stable and widely available materials to provide functionalized alicyclic compounds, which could be em-ployed as synthetic building blocks for synthesis of natural products and bioactive compounds. Over the past four decades, many dearomatization reactions have developed and applied for synthesis of alicyclic compounds con-taining six–membered carboncyclic moieties. This article reviews six kinds of dearomatization reactions of aro-matic compounds including oxidative dearomatization, reductive dearomatization, photocatalyzed dearomatization, nucleophilic additive dearomatization, σ-rearrangement dearomatization, transition metals promoted dearomatiza-tion, are reviewed. Among them, the transition metals promoted dearomatization proceeded under mild reaction conditions with various substrates, and which could be applied for synthesis of bioactive compounds.

CLC Number: 

[ 1 ] 迪迪埃·阿斯特吕克(Didier Astruc) . 现代芳烃化学———概念、合成及应用(Modern Aromaticity Chemistry : Conception, Syntheses, Application) . 北京: 化学工业出版社(Beijing :Chemistry Industry Press) , 2005. 285
[ 2 ] Quideau S , Looney M A , Pouysegu L. Org. Lett . , 1999 , 1(10) : 1651 —1654
[ 3 ] Fernández I , Forcén-Acebal A , García-Granda S , López-Ortiz F.J . Org. Chem. , 2003 , 68 : 4472 —4485
[ 4 ] Stang P J , Zhdankin V V. Chem. Rev. , 1996 , 96 : 1123 —1178
[ 5 ] Lebrasseur N , Fan G J , Oxoby M, et al . Tetrahedron , 2005 , 61 :1551 —1562
[ 6 ] Pitsinos E N , Cruz A. Org. Lett . , 2005 , 7 : 2245 —2248
[ 7 ] Stephane Q , Laurent P , Aurelie O , et al . Molecules , 2005 , 10(1) : 201 —216
[ 8 ] Mejorado L H , Hoarau C , Pettus T R R. Org. Lett . , 2004 , 6(10) : 1535 —1538
[ 9 ] Van de Water R W, Hoarau C , Pettus T R R. Tetrahedron Lett . ,2003 , 44 (27) : 5109 —5113
[10] Pitsinos E N , Cruz A. Org. Lett . , 2005 , 7 : 2245 —2248
[11] Mandal S , Macikenas D , Protasiewicz J D , et al . J . Org.Chem. , 2000 , 65 : 4804 —4809
[12] Sayre L M, Nadkarni D V. J . Am. Chem. Soc. , 1994 , 116 :3157 —3158
[13] Zhu J L , Grigoriadis N P , Lee J P , et al . J . Am. Chem. Soc. ,2005 , 127 : 9342 —9343
[14] Swenton J S , Carpenter K, Chen Y, et al . J . Org. Chem. ,1993 , 58 : 3308 —3316
[15] Boyd D R , Sharma N D , Barr S A , et al . J . Am. Chem. Soc. ,1994 , 116 : 1147 —1148
[16] 王玉炉(Wang Y L ) . 有机合成化学( Organic Synthesis Chemistry) . 北京: 科学出版社(Beijing : Science Press) ,2005. 291 —292
[17] 姜麟忠(Jiang L Z) . 催化氢化在有机合成中的应用(Catalysed Hydrogenation in Organic Synthesis) . 北京: 化学工业出版社(Beijing : Chemistry Industry Press) , 1987. 312 —318
[18] Donohoe T J , Garg R , Stevenson C A. Tetrahedron : Asymmetry ,1996 , 7 (2) : 317 —344
[19] Heller E , Lautenschlager W, Holzgrabe U. Tetrahedron Lett . ,2005 , 46 : 1247 —1249
[20] Birch A J , Smith H , Rew Q. J . Chem. Soc. , 1958 , 7 : 17 —20
[21] Birch A J . J . Chem. Soc. , 1944 , 430 —433
[22] Krapcho A P , Bothner-By A A. J . Am. Chem. Soc. , 1959 , 81 :3658 —3666
[23] 蓝仲薇(Nan Z W) , 李瑛(Li Y) , 陈华争(Chen H Z) 等. 有机化学(Organic Chemistry) . 北京: 海洋出版社(Beijing : China Ocean Press) , 2004. 129
[24] Noh T , Kim D , Kim Y J . J . Org. Chem. , 1998 , 63 : 1212 —1216
[25] Plunian B , Mortier J , Vaultier M. J . Org. Chem. , 1996 , 61 :5206 —5207
[26] Saito S , Shimada K, Yamamoto H , et al . Chem. Commun. ,1997 , 1299 —1300
[27] Rawson D J , Meyers A I. J . Org. Chem. , 1991 , 56 : 2292 —2294
[28] Barner B A , Meyers A I. J . Am. Chem. Soc. , 1984 , 106 (6) :1865 —1866
[29] Sanchez C M A , Iglesias J , Lopez Ortiz F L. Tetrahedron Lett . ,2002 , 43 (14) : 2565 —2568
[30] Fernandez I , Ortiz F L , Velazquez A M, et al . J . Org. Chem. ,2002 , 67(11) : 3852 —3860
[31] Fernandez I , Forcen-Acebal A , Garcia-Granda S , et al . J . Org.Chem. , 2003 , 68(11) : 4472 —4485
[32] Ramallal A M, Fernández I , López-Ortiz F , et al . Chem. Eur.J . , 2005 , 11 : 3022 —3031
[33] Gomez G R , Ortiz F L. Synlett . , 2002 , 5 : 781 —783
[34] Meyers A , Roth G P , Hoyer D. J . Am. Chem. Soc. , 1988 ,110 : 4611 —4624
[35] Shindo M, Koga K, Tomioka K. J . Org. Chem. , 1998 , 63 :9351 —9357
[36] Wang Z H , Xi Z F. Synlett , 2006 , (8) : 1275 —1277
[37] Liu R , Zhang C , Zhou X, et al . Chem. Eur. J . , 2006 , 12 :6940 —6952
[38] Clayden J , Knowles F E , Baldwin L R. J . Am. Chem. Soc. ,2005 , 127 : 2412 —2413
[39] Shirai N , Watanabe Y, Sato Y. J . Org. Chem. , 1990 , 55 :2767 —2770
[40] Shirai N , Sumiya F , Sato Y, et al . J . Org. Chem. , 1989 , 54 :836 —840
[41] Hauser C R , Eenam D N V. J . Am. Chem. Soc. , 1957 , 79 :5512 —5520
[42] Berger R ,Ziller J W,van Vranken D L. J . Am. Chem. Soc. ,1998 , 120 (4) : 841 —842
[43] Burdon J G, Moffatt J G. J . Am. Chem. Soc. 1967 , 89 : 4725 —4735
[44] Burdon M G, Moffatt J G. J . Am. Chem. Soc. 1965 , 87 :4656 —4658
[45] McComasC C , van Vranken D L. Tetrahedron Lett . , 2003 , 44 :8203 —8205
[46] Monje P , Grana P , Paleo M R , et al . Org. Lett . , 2006 , 8(5) :951 —954
[47] Pape A R , Kaliappan K P , Kündig E P. Chem. Rev. , 2000 ,100 : 2917 —2940
[48] Zhou L , Wu L Z , Zhang L P , et al . Organometallics , 2006 , 25(7) : 1707 —1711
[49] Kuendig E P , Bellido A , Kaliappan K P , et al . Organic &Biomolecular Chemistry , 2006 , 4(2) : 342 —351
[50] Barluenga J , Nandy S K, Laxmi Y R S , et al . Chemistry , 2003 ,9 (23) : 5725 —5736
[51] Pigge F C , Coniglio J J , Dalvi R. J . Am. Chem. Soc. , 2006 ,128(11) : 3498 —3499
[52] Pigge F C , Coniglio J J , Rath N P. Org. Lett . , 2003 , 5 (11) :2011 —2014
[53] Keane J M, Harman W D. Organometallics , 2005 , 24 : 1786 —1798
[54] Bao M, Nakamura H , Yamamoto Y. J . Am. Chem. Soc. , 2001 ,123 : 759 —760

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[5] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[8] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[9] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[12] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[15] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
Viewed
Full text


Abstract

The Dearomatizetion of Aromatic Compounds