中文
Announcement
More
Progress in Chemistry 2007, Vol. 19 Issue (05): 680-688 Previous Articles   Next Articles

• Review •

Visible Light-Driven Semiconductor Photocatalysts for the Decomposition of Water

Tian Mengkui1,2,3; Shangguan Wenfeng2**; Wang Shijie1 ;Ouyang Ziyuan1   

  1. 1. State Key Laboratory of Environmental Geochemistry, Geochemistry Institute, Chinese Academy of Sciences, Guiyang 55002, China ;
    2. Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200030, China;
    3. Graduate School of Chinese Academy of Sciences, Beijing, 100049,China;
  • Received: Revised: Online: Published:
PDF ( 3328 ) Cited
Export

EndNote

Ris

BibTeX

The urgent work for photocatalytically splitting water into H2 and O2 is to develop photocatalysts capable of responding to visible light occupying nearly half amount of solar spectrum. Many ways to make photocatalysts active under visible light have been extensively studied and practiced. In this article, band engineering such as doping with cations and anions for TiO2, solid solution with narrow and wide precursor photocatalysts and Z -scheme system are reviewed.The implementation and characterization of different ways and their mechanisms for visualization based on electronic band structure is discussed.

CLC Number: 

[ 1 ] Fujishima A , Honda K. Nature , 1972 , 238 : 37 —38
[ 2 ] Kudo A , Sayama K, Tanaka A. J . Catal . , 1989 , 120 ( 2) :337 —352
[ 3 ] Kato H , Kudo A. Catal . Today , 2003 , 78(1/4) : 561 —569
[ 4 ] Sato J , Saito N , Nishiyama H , et al . J . Phys. Chem. B , 2001 ,105(26) : 6061 —6063
[ 5 ] Sato J , Kobayashi H , Ikarashi K, et al . J . Phys. Chem. B ,2004 , 108 (14) : 4369 —4375
[ 6 ] Kudo A , Kato H , Tsuji I. Chem. Lett . , 2004 , 33 (12) : 1534 —1539
[ 7 ] Kato H , Kudo A. J . Phys. Chem. B , 2002 , 106 (19) : 5029 —5034
[ 8 ] Niishiro R , Kato H , Kudo A. Phys. Chem. Chem. Phys. ,2005 , 7(10) : 2241 —2245
[ 9 ] Konta R , Ishii T , Kato H , et al . J . Phys. Chem. B , 2004 , 108(26) : 8992 —8995
[10] KimJ , Hwang D W, Kim H G, et al . Top. Catal . , 2005 , 35(3/4) : 295 —303
[11] Yin S , Zhang Q W, Saito F , et al . Chem. Lett . , 2003 , 32(4) :358 —359
[12] Kudo A , Sekizawa M. Chem. Commun. , 2000 , (15) : 1371 —1372
[13] Kudo A , Sekizawa M. Catal . Lett . , 1999 , 58 (4) : 241 —243
[14] Hitoki G, Ishikawa A , Takata T , et al . Chem. Lett . , 2002 ,(7) : 736 —737
[15] Asahi R , Morikawa T , Ohwaki T , et al . Science , 2001 , 293(5528) : 269 —271
[16] Lindgren T , Mwabora J M, Avendano E , et al . J . Phys. Chem.B , 2003 , 107 (24) : 5709 —5716
[17] Yang T S , Yang M C , Shiu C B , et al . Appl . Surf . Science ,2006 , 252 (10) : 3729 —3736
[18] Irie H , Watanabe Y, Hashimoto K. J . Phys. Chem. B , 2003 ,107 (23) : 5483 —5486
[19] Burda C , Lou Y B , Chen X B , et al . Nano Lett . , 2003 , 3 (8) :1049 —1051
[20] Gole J L , Stout J D , Burda C , et al . J . Phys. Chem. B , 2004 ,108 (4) : 1230 —1240
[21] Gole J L , Burda C , Fedorov A G, et al . Rev. Adv. Mat . Sci . ,2003 , 5 (4) : 265 —269
[22] Sakthivel S , Kisch H. Chem. Phy. Chem. , 2003 , 4 : 487 —490
[23] Ihara T , Miyoshi M, Iriyama Y, et al . Appl . Catal . B :Environ. , 2003 , 42 (4) : 403 —409
[24] Sakatani Y, Ando H , Okusako K, et al . J . Mater. Res. , 2004 ,19 (7) : 2100 —2108
[25] Liu M Y, You W S , Lei Z B , et al . Chem. Commun. , 2004 ,2192 —2193
[26] Yamasita D , Takata T , Hara M, et al . Solid State Ionics , 2004 ,172 (1/4) : 591 —595
[27] Takata T , Tanaka A , Hara M, et al . Catal . Today , 1998 , 44 (1/4) : 17 —26
[28] Hara M, Takata T , Kondo J N , et al . Catal . Today , 2004 , 90(3/4) : 313 —317
[29] Sato J , Saito N , Yamada Y, et al . J . Am. Chem. Soc. , 2005 ,127 (12) : 4150 —4151
[30] Wang J S , Yin S , Komatsu M. J . Euro. Ceram. Soc. , 2005 , 25(13) : 3207 —3212
[31] Khan S , Al-Shahry M, Ingler W B. Science , 2002 , 297 : 2243 —2245
[32] Sakthivel S , Kisch H. Angew. Chem. Int . Ed. , 2003 , 42 (40) :4908 —4911
[33] Choi Y, Umebayashi T , Yamamoto S , et al . J . Mater. Science Lett . , 2003 , 22 (17) : 1209 —1211
[34] Choi Y, Umebayashi T , Yoshikawa M. J . Mater. Science , 2004 ,39 (5) : 1837 —1839
[35] Irie H , Watanabe Y, Hashimoto K. Chem. Lett . , 2003 , 32(8) : 772 —773
[36] Umebayashi T , Yamaki T , Tanaka S , et al . Chem. Lett . , 2003 ,32 (4) : 330 —331
[37] Takeshita K, Yamashita A , Ishibashi T , et al . J . Photoch.Photobio. A , 2006 , 177 (2P3) : 269 —275
[38] Lin L , Lin W, Zhu Y X, et al . Chem. Lett . , 2005 , 34 (3) :284 —285
[39] Zhao W, Ma W H , Chen C C , et al . J . Am. Chem. Soc. ,2004 , 126 (15) : 4782 —4783
[40] Xie Y B , Li P , Yuan C W. J . Rare Earth , 2002 , 20 ( 6) :619 —625
[41] Luo H M, Takata T , Lee Y G, et al . Chem. Mater. , 2004 , 16(5) : 846 —849
[42] Hong X T , Wang Z P , Cai W M, et al . Chem. Mater. , 2005 ,17(6) : 1548 —1552
[43] Nukumizu K, Nunoshige J , Takata T , et al . Chem. Lett . , 2003 ,32 (2) : 196 —197
[44] Nakamura I , Negishi N , Kutsuna S , et al . J . Mole. Catal . A:Chem. , 2002 , 161 : 205 —212
[45] Maeda K, Takata T , Hara M, et al . J . Am. Chem. Soc. , 2005 ,127 (23) : 8286 —8287
[46] Maeda K, Teramura K, Lu D L , et al . Nature , 2006 , 440(7082) : 295 —295
[47] Kudo A , Tsuji I , Kato H. Chem. Commun. , 2002 , 1958 —1959
[48] Tsuji I , Kato H , Kobayashi H , et al . J . Phys. Chem. B , 2005 ,109 (15) : 7323 —7329
[49] Tsuji I , Kato H , Kudo A. Angew. Chem. Int . Ed. , 2005 , 44(23) : 3565 —3568
[50] Tsuji I , Kato H , Kobayashi H , et al . J . Am. Chem. Soc. ,2004 , 126 (41) : 13406 —13413
[51] Kato H , Hori M, Konta R , et al . Chem. Lett . , 2004 , 33 (10) :1348 —1349
[52] Sayama K, Mukasa K, Abe R , et al . J . Photoch. Photobio. A ,2002 , 148 (1P3) : 71 —77
[53] Sayama K, Yoshida R , Kusama H , et al . Chem. Phys. Lett . ,1997 , 277 (4) : 387 —391
[54] Shangguan W F , Yoshida A. Sol . Energ. Mat . Sol . C , 2001 , 69(2) : 189 —194
[55] Shangguan W F , Yoshida A. J . Phys. Chem. B , 2002 , 106(47) : 12227 —12230
[56] Ishikawa A , Takata T , Kondo J N , et al . J . Am. Chem. Soc. ,2002 , 124 (45) : 13547 —13553
[57] Ishikawa A , Takata T , Matsumura T , et al . J . Phys. Chem. B ,2004 , 108 : 2637 —2642
[58] Kasahara A , Nukumizu K, Takata T , et al . J . Phys. Chem. B ,2003 , 107 (3) : 791 —797
[59] Kim H G, Hwang D W, Lee J S. J . Am. Chem. Soc. , 2004 ,126 (29) : 8912 —8913
[60] Ye J H , Zou Z G, Arakawa H , et al . J . Photochem. Photobiol .A , 2002 , 148 : 79 —83
[61] Zou Z G, Ye J H , Arakawa H. Nature , 2001 , 414 : 625 —627
[62] Tang J W, Zou Z G, Ye J H. J . Phys. Chem. B , 2003 , 107(51) : 14265 —14269
[63] Wang D F , Zou Z G, Ye J H. Chem. Phys. Lett . , 2005 , 411(4/6) : 285 —290
[64] Zou Z G, Arakawa H. J . Photoch. Photobio. A , 2003 , 158 :145 —162
[65] Tian M K, Shangguan W F , Yuan J , et al . Appl . Catal . A:Gen. , 2006 , 309 : 76 —84

[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[4] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[5] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[6] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[7] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[8] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[9] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[10] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[11] Honghong Wang, Wen Lei, Xiaojian Li, Zhong Huang, Quanli Jia, Haijun Zhang. Catalytic Reductive Degradation of Cr(Ⅵ) [J]. Progress in Chemistry, 2020, 32(12): 1990-2003.
[12] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[13] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[14] Yajing Chen, Xubing Li, Chenho Tung, Lizhu Wu. Artificial Photosynthesis for Hydrogen Production [J]. Progress in Chemistry, 2019, 31(1): 38-49.
[15] Di Liu, Qian Liu, Yonggang Wang, Yongfa Zhu. Bi2SiO5 Semiconductor Photocatalyst [J]. Progress in Chemistry, 2018, 30(6): 703-709.