中文
Announcement
More
Progress in Chemistry 2007, Vol. 19 Issue (05): 665-670 Previous Articles   Next Articles

• Review •

Properties and Distribution of the Surface Hydroxyl Groups of TiO2

Lin Huaxiang;Wang Xuxu** ; Fu Xianzhi   

  1. Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002
  • Received: Revised: Online: Published:
PDF ( 6846 ) Cited
Export

EndNote

Ris

BibTeX

Having surface hydroxyl groups are one of the most important characteristics of TiO2 surface, and this has great effect on the photocatalysis and adsorption properties of TiO2. Study of surface hydroxyl groups of TiO2 is of importance in the investigation of surface properties and catalysis properties of TiO2. This review briefly summarized the investigations of surface hydroxyl groups in recent years, including the states and kinds of the hydroxyl groups of the different crystal phases of TiO2, the effect of absorbed H2O on the hydroxyl groups, and the photo electrochemical and photocatalytic behaviors of the hydroxyl groups. Finally, some problems In the study of surface hydroxyl groups is analyzed.

CLC Number: 

[ 1 ] Hoffmann M R , Martin S T , Chol W Y. Chem. Rev. , 1995 , 95 :69 —96
[ 2 ] Organ B , Gratzel M. Nature , 1991 , 353 : 737 —739
[ 3 ] Wolfrum E J , Huang J , Blake D M. Environ. Sci . Technol . ,2002 , 36 : 3412 —3419
[ 4 ] Wamer W G, Yin J J , Wei R R. Free Radic. Biol . Med. ,1997 , 23 : 851 —858
[ 5 ] Borteau M A. Chem. Rev. , 1996 , 96 : 1413 —1430
[ 6 ] Lewis K E , Parfitt G D. Trans. Faraday Soc. , 1966 , 62 : 204 —214
[ 7 ] Lad R J . Surf . Rev. Lett . , 1995 , 21 : 109 —126
[ 8 ] Campbell C T. Surf . Sci . Rep. , 1997 , 27 : 1 —111
[ 9 ] Bonnell D A. Prog. Surf . Soc. , 1998 , 57 : 187 —252
[10] Ulrike D. Surf . Sci . Rep. , 2003 , 48 : 53 —229
[11] Hadjiivanov K I , Klissurski D G. Chem. Soc. Rev. , 1996 , 25 :61 —70
[12] Yates D J C. J . Phys. Chem. , 1961 , 65 : 746 —753
[13] Kiselev A V , Uvarov A V. Surf . Sci . , 1967 , 6 : 399 —421
[14] Primet M, Pichat P , Mathieu M V. J . Phys. Chem. , 1971 , 75 :1216 —1220
[15] Primet M, Pichat P , Mathieu M V. J . Phys. Chem. , 1971 , 75 :1221 —1226
[16] Primet M, Basset J , Mathieu M V , Prerre M. J . Phys. Chem. ,1970 , 74 : 2868 —2874
[17] Munuera G. J . Catal . , 1970 , 18 : 19 —29
[18] Jones P , Hockey J A. Trans. Faraday Soc. , 1971 , 67 : 2669 —2678
[19] Jaycock M J , Waldsax J C R. J . Chem. Soc. Faraday Trans. ,1974 , 70 : 1501 —1517
[20] Jones P , Hockey J A. Trans. Faraday Soc. , 1971 , 67 : 2679 —2685
[21] Rochester C H. Colloid Surf . , 1986 , 21 : 205 —217
[22] Suda Y, Morimoto T. Langmuir , 1987 , 3 : 786 —788
[23] Malet P , Munuera GJ . J . Chem. Soc. Faraday Trans. , 1989 ,85 : 4157 —4166
[24] Bezrodna T , Puchkovska G, Shymanovska V , et al . J . Mol .Structure , 2004 , 700 : 175 —181
[25] Herman G S , Dohanlek Z , Ruzycki N. J . Phys. Chem. B ,2003 , 107 : 2788 —2795
[26] Vittadni A , Selloni A , Rotzinger F P. Phys. Rev. Lett . , 1998 ,81 : 2954 —2957
[27] Bredow T , Jug W. Surf . Sci . , 1995 , 327 : 398 —408
[28] Selloni A , Vittadini A , Gratzel M. Surf . Sci . , 1998 , 402(1/3) :219 —222
[29] Muryan C A , Hardman P J , Crouch J J . Surf . Sci . , 1991 , 251 :747 —752
[30] Bourgeois S , Gitton L , Perdereau M. J . Chem. Phys. Chem.Biol . , 1988 , 85 : 413 —416
[31] Bourgeois S , Jomard F , Perdereau M. Surf . Sci . , 1992 , 279 :349 —354
[32] WangL Q , Skiba P X A , Shultz N. Surf . Sci . , 1999 , 440 :60 —68
[33] Lo W J , Chung Y W, Somorjai G A. Surf . Sci . , 1978 , 71 :199 —219
[34] Henderson M A. Surf . Sci . , 1994 , 319 : 315 —328
[35] Fahmi A , Minot C. Surf . Sci . , 1994 , 304 : 343 —359
[36] Ferri K F , Wang L Q. J . Vac. Sci . Technol . A , 1998 , 16 :956 —960
[37] Nalewajski R T , Koester A M, Bredow T. J . Mol . Catal . , 1993 ,82 : 407 —423
[38] Brinkley D , Dietrich M, Engel T. Surf . Sci . , 1998 , 395 : 292 —306
[39] Henrich V E , Dresselhaus G, Zeiger H J . J . Solid State Commun. , 1977 , 24 : 623 —626
[40] Henderson M A. Surf . Sci . , 1996 , 355 : 151 —166
[41] Hugenschmidt M B , Gamble L. Surf . Sci . , 1994 , 302 : 329 —340
[42] Kurtz P L , Stockbauer R , Madey T E. Surf . Sci . , 1989 , 218 :178 —200
[43] White J M, Szanyi J , Henderson M A. J . Phys. Chem. B ,2003 , 107 : 9029 —9033
[44] Henderson M A. Surf . Sci . , 1998 , 400 : 203 —219
[45] Fujino T , Katayama M, Indzuka K. Appl . Phys. Letter , 2001 ,79 : 2716 —2718
[46] Henderson M A , Epling W S , Peden C H F. J . Phys. Chem. B ,2003 , 107 : 534 —545
[47] Yoshimichi N , Osamu M. J . Phys. Chem. B , 2005 , 109 :23948 —23954
[48] Anpo M, Shima T , Kubokawa Y. Chem. Letter , 1985 , 12 :1799 —1802
[49] Finne K S , Cassidy D J , Bartlett J R , et al . Langmuir , 2001 ,17 : 816 —820
[50] Takeuchi M, Martra G, Coluccia S , Anpo M. J . Phys. Chem.B , 2005 , 109 : 7387 —7391
[51] Lazzeri M, Vittadini A , Selloni A. Phys. Rev. B , 2001 , 63 :155409 —155418
[52] Lazzeri M, Vittadini A , Selloni A. Phys. Rev. B , 2002 , 65 :art . no. 119901
[53] Oliver P M, Watson G W, Kelsey E T. J . Mater. Chem. , 1997 ,7 : 563 —568
[54] Henderson M A. Langmuir , 1996 , 12 : 5093 —5098
[55] Wang L Q , Baer D R , Engelhard M H , et al . Surf . Sci . , 1995 ,344 : 237 —250
[56] Martin S T , Herrmann H , Hoffmann M R. Trans. Faraday Soc. ,1994 , 90 : 3323 —3330
[57] Wang R , Hashimoto K, Fujishima A. Nature , 1997 , 388 : 431 —432
[58] Wang R , Hashimoto K, Fujishima A , et al . Adv. Mater. , 1998 ,10 : 135 —138
[59] Wang R , Sakai N , Fujishima A. J . Phys. Chem. B , 1999 , 103 :2188 —2194
[60] Sakai N , Fujishima A , Watanabe T , et al . J . Phys. Chem. B ,2001 , 105 : 3023 —3026
[61] Szczepankiewicz S H , Colussi A J , Hoffmann M R. J . Phys.Chem. B , 2000 , 104 : 9842 —9850
[62] Szczepankiewicz S H , Moss J A , Hoffmann M R. J . Phys. Chem.B , 2002 , 106 : 7654 —7658
[63] Wang C Y, Groenzin H , Shultz M J . Langmuir , 2003 , 19 :7330 —7334
[64] Ryuhei N , Kazuhiro U , Shinri S. Langmuir , 2001 , 17 : 2298 —2300
[65] Zubkov T , Stahl D , Thompson T L. J . Phys. Chem. B , 2005 ,109 : 15454 —15462
[66] Kesselman J M, Weres O , Lewis N S , et al . J . Phys. Chem. B ,1997 , 101 : 2637 —2643
[67] Augugliaro V , Palmisano L , Scalfani A , et al . Toxicol . Environ.Chem. , 1988 , 16 : 89 —109
[68] Okamoto K, Yamamoto Y, Tanaka H , et al . Bull . Chem. Soc.Jpn. , 1985 , 58 : 2015 —2022
[69] Maira A J , Coronado J M, Augugliaro V , et al . J . Catal . , 2001 ,202 : 413 —420
[70] Rusu C N , Yates J T Jr. J . Phys. Chem. B , 2000 , 104 :12292 —12298
[71] Moss J A , Szczepankiewicz S H , Park E , et al . J . Phys. Chem.B , 2005 , 109 : 19779 —19785
[72] Nosaka A Y, Kojima E , Fujiwara T , et al . J . Phys. Chem. B ,2003 , 107 : 12042 —12044
[73] Nosaka A Y, Kojima E , Fujiwara T , et al . J . Phys. Chem. B ,2004 , 108 : 9121 —9125
[74] Nosaka A Y, Nishino J , Fujiwara T , et al . J . Phys. Chem. B ,2006 , 110 : 8380 —8385

[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[6] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[7] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[8] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[9] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[10] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[11] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[12] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[13] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[14] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[15] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.