中文
Announcement
More
Progress in Chemistry 2007, Vol. 19 Issue (0203): 350-355 Previous Articles   Next Articles

• Review •

Metal-Free Initiator /Catalyst Systems for the Ring Opening Polymerization of Cyclic Ester Monomers

Liu Jiyan1,2; Zhang Liming2**   

  1. 1. School of Chemistry and Environmental Engineering, Jianghan University, Wuhan 430056,China;
    2. School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275,China
  • Received: Revised: Online: Published:
  • Contact: Zhang Liming
PDF ( 1864 ) Cited
Export

EndNote

Ris

BibTeX

The ring opening polymerization (ROP) of cyclic ester monomers in the presence of various initiator/catalyst systems is a main approach for the preparation of biodegradable aliphatic polyesters. The recent progress of metal-free initiator/catalyst systems used for the ROP of cyclic ester monomers is reviewed, including H2O, alcohol, amine and carboxylic acid initiators, as well as proton acid, phosphine, N-heterocycle catalysts.

CLC Number: 

[ 1 ] Amass W, Amass A , Tighe B. Polym. Int . , 1998 , 47(2) : 89 —114
[ 2 ] Uhrich K E , Cannizzaro S M, Shakesheff R S , et al . Chem.Rev. , 1999 , 99(11) : 3181 —3198
[ 3 ] Langer R. Acc. Chem. Res. , 2000 , 33(2) : 94 —101
[ 4 ] Kricheldorf H R , Kreiser-Saunders I , Stricker A.Macromolecules , 2000 , 33(3) : 702 —709
[ 5 ] Storey R F , Sherman J W. Macromolecules , 2002 , 35 ( 5 ) :1504 —1512
[ 6 ] Degree P , Dubois P , Jerome R. Macromol . Chem. Phys. , 1997 ,198(6) : 1973 —1984
[ 7 ] Shen Y Q , Shen Z Q , Zhang Y F , et al . J . Polym. Sci . Part A:Polym. Chem. , 1997 , 35(8) : 1339 —1352
[ 8 ] Dechy-Cabaret O , Martin-Vaca B , Bourissou D. Chem. Rev. ,2004 , 104 : 6147 —6176
[ 9 ] 於秋霞(Yu Q X) , 朱光明(Zhu G M) , 梁国正(Ling G Z) . 高分子材料科学与工程( Polymer Materials Science and Engineering) , 2004 , 20(5) : 37 —40
[10] MacDonald R T , Pulapura S K, Svirkin Y Y, et al .Macromolecules , 1995 , 28 : 73 —78
[11] Bisht K S , Henderson L A , Gross R A , et al . Macromolecules ,1997 , 30 : 2700 —2711
[12] Feng J , He F , Zhuo R X. Macromolecules , 2002 , 35 ( 19) :7175 —7177
[13] Cerrai P , Tricoli M, Andruzzi F , Paci M. Polymer , 1989 , 30(2) : 338 —343
[14] Cerrai P , Tricoli M. Makromol . Chem. Rapid Commun. , 1993 ,14(9) : 529 —538
[15] Shibasaki Y, Sanda F , Endo T. Macromolecules , 2000 , 33(10) :3590 —3593
[16] Shibasaki Y, Sanada H , Endo T , et al . 2000 , 33 (12) : 4316 —4320
[17] Sanda F , Sanada H , Endo T , et al . Macromolecules , 2002 , 35(3) : 680 —683
[18] Kim M S , Seo K S , Khang G, et al . Macromol . Rapid Commun. , 2005 , 26(8) : 643 —648
[19] Wilson B C , Jones C W. Macromolecules , 2004 , 37 ( 26 ) :9709 —9714
[20] Fukuzaki H , Yoshida M, Asano M, et al . Eur. Polym. J . ,1989 , 25 (10) : 1019 —1026
[21] Fukuzaki H , Yoshida M, Asano M, et al . Eur. Polym. J . ,1990 , 26(4) : 457 —461
[22] Imasaka K, Nagai T , Yoshida M, et al . Eur. Polym. J . , 1990 ,26(8) : 831 —838
[23] 解德良( Xie D L) , 姜标(Jiang B) . 高分子学报(Acta Polymerica Sinica) , 2000 , 5 : 532 —537
[24] Myers M, Connor E F , Glauser T , et al . J . Polym. Sci . Part A:Polym. Chem. , 2002 , 40(7) : 844 —851
[25] Connor E F , Nyce G W, Myers M, et al . J . Am. Chem. Soc. ,2002 , 124 (6) : 914 —915
[26] Li Y, Li Q B , Li F X, et al . Biomacromolecules , 2006 , 7 (1) :224 —231
[27] Brode G L , Koleske J V. J . Macromol . Sci . Chem. , 1972 , A6(6) : 1109 —1114
[28] Wilson D R , Beaman R G. J . Polym. Sci . PartA21 , 1970 , 8(8) : 2161 —2170
[29] Murayama M, Sanda F , Endo T. Macromolecules , 1998 , 31(3) :919 —923
[30] Li H , Wu J , Brunel S , et al . Ind. Eng. Chem. Res. , 2005 , 44(23) : 8641 —8643
[31] Rozenberg B A. Pure Appl . Chem. , 1981 , 53 : 1715 —1761
[32] Liu J Y, Liu L J . Macromolecules , 2004 , 37(8) : 2674 —2676
[33] Bixler K J , Calhoun G C , Scholsky K M, et al . Polym. Prepr. ,1990 , 31(2) : 494 —495
[34] 张其锦(Zhang Q J ) , 王冰(Wang B) , 罗莜烈(Luo Y L) . 应用化学(Chinese Journal of Applied Chemistry) , 1994 , 11 (2) :57 —61
[35] Yu Z J , Liu L J , Zhuo R X. J . Polym. Sci . Part A: Polym.Chem. , 2003 , 41(1) : 13 —21
[36] Song Y, Liu L J , Weng X C. J . Biomater. Sci . Polym. Ed. ,2003 , 14 : 241 —253

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[7] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[10] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[11] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[12] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[13] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[14] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.
[15] Wenhao Wu, Wen Lei, Liqiong Wang, Sen Wang, Haijun Zhang. Preparation of Single Atom Catalysts [J]. Progress in Chemistry, 2020, 32(1): 23-32.