中文
Announcement
More
Progress in Chemistry 2007, Vol. 19 Issue (0203): 250-255 Previous Articles   Next Articles

• Review •

Microwave Irradiation-Enzyme Coupling Catalysis

Xia Yongmei;Sun Shiyu;Fang Yun**;Min Rui;Wu Hongping;Zhang Yue   

  1. School of Chemical and Material Engineering, Southern Yangtze University, Wuxi 214036, China
  • Received: Revised: Online: Published:
PDF ( 1352 ) Cited
Export

EndNote

Ris

BibTeX

Appling microwave irradiation in non-aqueous enzymatic catalysis can bringe many interesting findings, which is quite different from those observed from conventional heating assisted enzymatic reaction. The progress in microwave irradiation-enzyme coupling catalysis is reviewed. The evidence of non-thermal effect generated by microwave irradiation, effect of microwave irradiation on enzyme formation and activity, effect of microwave irradiation on kinetics, enantioselectivity, substrates selectivity, and regionselectivity in the reactions are discussed as well. In most of the cases, microwave irradiation does not reduce enzyme's activity but improves reaction rate instead, and influences the enzyme specificity.

CLC Number: 

[ 1 ] Gedye R , Smith F , Westawa K. Tetrahedron Lett . , 1986 , 27(3) : 279 —283
[ 2 ] Loupy A , Perreux L , Liagre M, et al . Pure Appl . Chem. , 2001 ,73(1) : 161 —166
[ 3 ] Favretto L , Nugent W A , Licini G. Tetrahedron Lett . , 2002 , 43 :2581 —2584
[ 4 ] Marwah P , Marwah A , Lardy H A. Tetrahedron , 2003 , 59 :2273 —2287
[ 5 ] Parker M C , Besson T , Lamare S , Legoy M D. Tetrahedron Lett . , 1996 , 37(46) : 8383 —8388
[ 6 ] Lin G, Lin W Y. Tetrahedron Lett . , 1998 , 39 : 4333 —4336
[ 7 ] Roy I , Gupta M N. Curr. Sci . , 2003 , 85 : 1685 —1693
[ 8 ] 蔡汉成(Cai H C) , 方云(Fang Y) , 夏咏梅(Xia Y M) 等. 有机化学( Chinese Journal of Organic Chemistry) , 2003 , 23 :298 —304
[ 9 ] 蔡汉成(Cai H C) , 高惠(Gao H) , 方云(Fang Y) 等. 化学学报(Acta Chimica Sinica) , 2004 , 62 : 923 —928
[10] Huang W, Xia Y M, Fang Y. J . Mol . Catal . B : Enzym. , 2005 ,35 : 113 —116
[11] Hoz A , Moreno A. Chem. Soc. Rev. , 2005 , 34(2) : 164 —178
[12] 金钦汉(Jin Q H) . 微波化学(Microwave Chemistry) . 北京: 科学出版社(Beijing : Science Press) , 1999. 146 —147
[13] Lidstrom P , Tiemey J , Wathey B. Tetrahedron , 2001 , 57 :9225 —9283
[14] Mingos D M, Bagurst D R. Chem. Soc. Rev. , 1991 , 20 : 1 —47
[15] 黄卡玛(Huang K M) , 胡希明(Hu X M) , 唐敬贤(Tang J X)等. 高等学校化学学报( Chemical Journal of Chinese Universities) , 1996 , 17 : 764 —768
[16] Procelli M, Cacciapuoti G, Fusco S , et al . FEBS Lett . , 1997 ,402 : 102 —106
[17] 孙晓娟(Sun X J ) , 苏跃增(Su Y Z) , 金凤明(Jin F M) . 江苏石油化工学院学报( J . Jiangsu Institute Petrochemical Technology) , 2000 , 12(3) : 42 —45
[18] Goswami S , Adak A K. Tetrahedron Letters , 2002 , 43 ( 46) :8371 —8373
[19] Carrillo-Munoz J R , Bouvet D , Guidbé Jampel E , et al . J . Org.Chem. , 1996 , 61 : 7746 —7750
[20] Pujic M G, Jampel E G, Loupy A , et al . J . Chem. Soc. Perkin Trans. , 1996 , 1 : 2777 —2780
[21] Bini M, Checcucci A , Millanta L , et al . J . Microw. Power ,1978 , 13 : 95 —99
[22] Vukova T , Atanassov A , Ivanov R , et al . Medical Science Monitor , 2005 , 11 : 50 —56
[23] 蔡汉成(Cai H C) . 江南大学硕士论文(MS Dissertation of Southern Yangtze University) , 2004
[24] Cara F L , Scarfi M R , Sabato D A. Bioelectromagnetics , 1999 ,20 : 172 —176
[25] Chen Y P , Liu Y J , Wang X L , et al . J . Integrative Plant Biology , 2005 , 47(7) : 849 —855
[26] Soysal C , Sêoyleemez Z. J . Food Eng. , 2005 , 68 : 349 —356
[27] Réjasse B , Lamare S , Legoy MD. Org. Biomol . Chem. , 2004 ,2 : 1086 —1089
[28] Roy I , Gupta M N. Tetrahedron , 2003 , 59(29) : 5431 —5436
[29] Yadav G D , Lathi P S. Synth. Commun. , 2005 , 35 : 1699 —1705
[30] Zhu S D , Yu Z N , Wu Y X. Process Biochem. , 2005 , 40 :3082 —3086
[31] Zhu S D , Yu Z N , Wu Y X, et al . Chem. Eng. Commun. ,2005 , 192 (8) : 1559 —1566
[32] Mondal K, Roy I , Gupta M N. Biocatal . Biotransfor. , 2004 , 22 :9 —16
[33] Lin S S , Wu C H. J . Am. Soc. Mass Spectrom. , 2005 , 16 :581 —588
[34] Khobragade C N , Kore G V. Indian J . Chem. , 2004 , 11 : 377 —381
[35] 黄伟( Huang W) . 江南大学硕士论文(MS Dissertation of Southern Yangtze University) , 2005
[36] Yadav G D , Lathi P S. J . Mol . Catal . A: Chem. , 2004 , 223 :51 —56
[37] Yadav G D , Lathi P S. Enzyme and Microbial . Technology ,2006 , 38 : 814 —820
[38] Bradoo S , Rathi P , Saxena R K. J . Biochem. Biophys. Methods ,2000 , 51 : 115 —120
[39] Vacek M, Zarevucka M, Wimmer Z. Biotech. Lett . , 2000 , 22 :1565 —1570
[40] Zarevúcka M, Vacek M, Wimmer Z , et al . Biotech. Lett . ,1999 , 21 : 785 —790
[41] 方云(Fang Y) , 夏咏梅(Xia Y M) , 黄伟(Huang W) . CN 1698 946A , 2005

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[9] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[10] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[11] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[12] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[15] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.