中文
Announcement
More
Progress in Chemistry 2007, Vol. 19 Issue (0203): 225-233 Previous Articles   Next Articles

• Review •

Nonmeatl Element Doping Mechanisms of Titanium Oxide Photocatalyst

Tang Yuchao1,2**; Huang Xianhuai2; Yu Hanqing1; Hu Chun3   

  1. 1. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China;
    2. School of Environmental Engineering, Anhui Institute of Architecture and Industry, Hefei, 230022, China;
    3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
  • Received: Revised: Online: Published:
  • Contact: Tang Yuchao
PDF ( 2218 ) Cited
Export

EndNote

Ris

BibTeX

In order to obtain visible light response, doping or modifying titania by nonmetal elements such as nitrogen has been investigated extensively in recent years. In this paper, recent progress in mechanism of titania doping by nitrogen, carbon, sulphur, fluorine is reviewed. Methods for preparing nitrogen doped titania are follows: i) reduce titania by ammonia gas under high temperature; ii) sputter titania target in nitrogen gas; iii)pulsed laser deposition in nitrogen gas; iv) mechanochemica1 process titania in ammonia condition; v)direct oxidation titanic nitrogen; vi)forming organic titanic nitride and then thermal treated it; vii)hydrolysis a titanic precursor in ammonia solution then thermal treated the precipitate. Structure and the mechanism of visible light response of the nitrogen doped titania are discussed according to literature reports although there had many inconsistent conclusions. Narrowing the band gap of titania or forming a new isolated level in band gap may be the most probable reason for visible response. Titania doping by carbon, sulphur or fluorine can also give rise to visible light response and high photo efficiency, but there had many inconsistent conclusions too.

CLC Number: 

[ 1 ] Fujishima A , Rao T N , Tryk D A. J . Photochem. Photobio. C:Photochem. Rev. , 2000 , 1 : 1 —21
[ 2 ] Anpo M, Takeuchi M. J . Catal . , 2003 , 216 : 505 —516
[ 3 ] Titus M P , Garcia-Molina V , Banos M A , et al . Appl . Catal . B :Environ. , 2004 , 47 : 219 —256
[ 4 ] 韩世同(Han S T) , 习海玲(Xi H L) , 史瑞雪(Shi R X) 等. 化学物理学报(Chin. J . Chem. Phys. , ) , 2003 , 16 : 339 —349
[ 5 ] 唐玉朝(Tang Y C) , 胡春(Hu C) , 王怡中(Wang YZ) 等. 化学进展(Prog. Chem. , ) , 2005 , 17 : 325 —332
[ 6 ] Xu A W, Gao Y, Liu H Q. J . Catal . , 2002 , 207 : 151 —157
[ 7 ] Wilke K, Breuer H D. J . Photochem. Photobio. A: Chem. ,1999 , 121 : 49 —53
[ 8 ] Kwon Y T , Song K Y, Lee W I , et al . J . Catal . , 2000 , 191 :192 —199
[ 9 ] Ranjit K T , Willner I , Bossmann S H , et al . J . Catal . , 2001 ,204 : 305 —313
[10] Subramanoan V , Wolf E , Kamat P V. J . Phys. Chem. B , 2001 ,105 : 11439 —11446
[11] Di Paola A , Garcia-López E , Ikeda S , et al . Catalysis Today ,2002 , 75 : 87 —93
[12] Hu C , Tang YC , Jiang Z , et al . Appl . Catal . A: Gen. , 2003 ,253 : 389 —396
[13] Arabatzis I M, Stergiopoulos T , Bernard M C , et al . Appl .Catal . B : Environ. , 2003 , 42 : 187 —201
[14] Arabatzis I M, Stergiopoulos T , Andreeva D , et al . J . Catal . ,2003 , 220 : 127 —135
[15] 闫鹏飞(Yan P F) , 周德瑞(Zhou D R) , 王建强(Wang J Q)等. 高等学校化学学报( Chemical Journal of Chinese Universities ) , 2002 , 23 : 2317 —2321
[16] 栾勇(Luan Y) , 傅平丰(Fu P F) , 戴学刚(Dai X G) 等. 化学进展(Progress in Chemistry) , 2004 , 16 : 738 —746
[17] Choi W Y, Termin A , Hoffmann M R. J . Phys. Chem. , 1994 ,98 : 13669 —13679
[18] Asahi R , Morikawa T , Ohwaki T , et al . Science , 2001 , 293 :269 —271
[19] Nakamura R , Tanaka T , Nakato Y. J . Phys. Chem. B , 2004 ,108 : 10617 —10620
[20] Mozia S , Tomaszewska M, Kosowska B , et al . Applied Catalysis B : Environmental , 2005 , 55 : 195 —200
[21] Tang YC , Huang X H , Yu H Q , et al . Chin. J . Chem. Phys. ,2006 , 19 : 355 —361
[22] Chen S Z , Zhang P Y, Zhuang D H , et al . Catalysis Communications , 2004 , 5 : 677 —680
[23] 陈顺利(Chen S L) , 刁训刚(Diao X G) , 杨盟( Yang M) 等.功能材料(Journal of Functional Materials) , 2005 , 36 : 464 —466
[24] Chen S Z , Zhang P Y, Zhu W P , et al . 催化学报(Chinese Journal of Catalysis) , 2004 , 25 : 515 —517
[25] Suda Y, Kawasaki H , Ueda T , et al . Thin Solid Films , 2004 ,453P454 : 162 —166
[26] Suda Y, Kawasaki H , Ueda T , et al . Thin Solid Films , 2005 ,475 : 337 —341
[27] Ihara T , Miyoshi M, Iriyama Y, et al . Applied Catalysis B :Environmental , 2003 , 42 : 403 —409
[28] Li F B , Li X Z , Ao C H , et al . Applied Catalysis B :Environmental , 2004 , 54 : 275 —283
[29] Huang X H , Tang Y C , Hu C , et al . Journal of Environmental Science , 2005 , 17 : 562 —565
[30] Liu Y, Chen X, Li J , et al . Chemosphere , 2005 , 61 : 11 —18
[31] Sano T , Negishi N , Koike K, et a1. J . Mater. Chem. , 2004 ,14 : 380 —384
[32] Nosaka Y, Matsushita M, Nishino J , et al . Science and Technology of Advanced Materials , 2005 , 6 : 143 —148
[33] Kobayakawa K, Murakami Y, Sato Y. J . Photochem. Photobio.A: Chem. , 2005 , 170 : 177 —179
[34] Yin S , Yamaki H , Zhang Q W, et al . Solid State Ionics , 2004 ,172 : 205 —209
[35] Chen S F , Chen L , Gao S , et al . Chemical Physics Letters ,2005 , 413 : 404 —409
[36] Burda C , Lou Y B , Chen X B , et al . Nano Letters , 2003 , 3 :1049 —1051
[37] Morikawa T , Asahi R , Ohwaki T , el a1. Jpn. J . Appl . Phys. ,2001 , 40 : 561 —563
[38] Mwabora J M, Lindgren T , Avendano E , et al . J . Phys. Chem.B , 2004 , 108 : 20193 —20198
[39] Yang M C , Yang T S , Wong M S. Thin Solid Films , 2004 , 469/470 : 1 —5
[40] Diwald O , Thompson T L , Goralski E G, et al . J . Phys. Chem.B , 2004 , 108 : 52 —57
[41] Irie H , Watanabe Y, Hashimoto K. J . Phys. Chem. B , 2003 ,107 : 5483 —5486
[42] Chen X B , Burda C. J . Phys. Chem. B , 2004 , 108 : 15446 —15449
[43] Valentin C D , Pacchioni J M, Selloni A. Phys. Rev. B , 2004 ,70 : art . no. 085116
[44] Lin Z S , Orlov A , Lambert R M, et al . J . Phys. Chem. B ,2005 , 109 : 20948 —20952
[45] Lindgren T , Mwabora J M, Avendano E , et al . J . Phys. Chem.B , 2003 , 107 : 5709 —5716
[46] Valentin C D , Pacchioni G, Selloni V , et al . J . Phys. Chem. B ,2005 , 109 : 11414 —11419
[47] Sato S. Chem. Phys. Lett . , 1986 , 123 : 126 —128
[48] Sakatani Y, Koike H. JP 72 419A , 2001
[49] Diwald O , Thompson T L , Zubkov T , et al . J . Phys. Chem. B ,2004 , 108 : 6004 —6008
[50] Gandhe A R , Fernandes J B. Journal of Solid State Chemistry ,2005 , 178 : 2953 —2957
[51] Kosowska B , Mozia S , Morawski A W, et al . Solar Energy Materials &Solar Cells , 2005 , 88 : 269 —280
[52] Li D , Haneda H , Hishita S , et al . Materials Science and Engineering B , 2005 , 117 : 67 —75
[53] Torres G R , Lindgren T , Lu J , et al . J . Phys. Chem. B , 2004 ,108 : 5995 —6003
[54] Gole J L , Stout J D , Burda C , et al . J . Phys. Chem. B , 2004 ,108 : 1230 —1240
[55] Yin J , Zou Z G, Ye J H. J . Phys. Chem. B , 2003 , 107 :4936 —4941
[56] Mrowetz M, Balcerski W, Colussi A J , Hoffmann M R. J . Phys.Chem. B , 2004 , 108 : 17269 —17273
[57] Konta R , Ishii T , Kato H , et al . J . Phys. Chem. B , 2004 ,108 : 8992 —8995
[58] Sakthivel S , Janczarek M, Kisch H. J . Phys. Chem. B , 2004 ,108 : 19384 —19387
[59] Chu S Z , Inoue S , Wada K, et al . Langmuir , 2005 , 21 :8035 —8041
[60] Tesfamichael T , Will G, Bell J . Applied Surface Science , 2005 ,245 : 172 —178
[61] Aita Y, Komatsu M, Yin S , et al . Journal of Solid State Chemistry , 2004 , 177 : 3235 —3238
[62] 唐玉朝(Tang Y C) , 黄显怀(Huang X H) , 俞汉青(Yu H Q) ,胡春( Hu C) . 无机化学学报( Chinese Journal of Inorganic Chemistry) , 2005 , 21 : 1747 —1751
[63] 黄显怀(Huang X H) , 陈初升(Chen C S) , 唐玉朝( Tang Y C) . 哈尔滨工业大学学报(Journal of Harbin Institute of Technology) , 2005 , 37 : 95 —97
[64] 杨松旺(Yang S W) ,高濂(Gao L) . 无机材料学报(Journal of Inorganic Materials) , 2005 , 20 : 785 —788
[65] Takeda N , Iwata N , Torimoto T. Journal of Catalysis , 1998 , 177 :240 —246
[66] Tryba B , Tsumura T , Janus M, et al . Applied Catalysis B :Environmental , 2004 , 50 : 177 —183
[67] Ao C H , Lee S C. Journal of Photochemistry and Photobiology A:Chemistry , 2004 , 161 : 131 —140
[68] Colón G, Hidalgo M C , Macias M, et al . Applied Catalysis B :Environmental , 2003 , 43 : 163 —173
[69] Carpio E , Zuniga P , Ponce S , et al . Journal of Molecular Catalysis A: Chemical , 2005 , 228 : 293 —298
[70] Khan S U M, Al-Shahry M, Ingler WB Jr. Science , 2002 , 297 :2243 —2245
[71] Irie H , Watanabe Y, Hashimoto K. ChemistryLetters , 2003 , 32 :772 —773
[72] Sakthivel S , Kisch H. Angew. Chem. Int . Ed. , 2003 , 42 :4908 —4911
[73] Neumann B , Bogdanoff P , Tributsch H , et al . J . Phys. Chem.B , 2005 , 109 : 16579 —16586
[74] Nagaveni K, Sivalingam G, Hegde M S , et al . Applied Catalysis B : Environmental , 2004 , 48 : 83 —93
[75] Wang H , Lewis J P. J . Phys. Condens. Matter , 2005 , 17 :L209 —L213
[76] Tachikawa T , Tojo S , Kawai K, et al . J . Phys. Chem. B , 2004 ,108 : 19299 —19306
[77] Park H , Choi W. J . Phys. Chem. B , 2004 , 108 : 4086 —4093
[78] Shon H K, Vigneswaran S , Ngo H H , et al . Water Research ,2005 , 39 : 2549 —2558
[79] Li D , Haneda H , Hishita S , et al . Journal of Fluorine Chemistry ,2005 , 126 : 69 —77
[80] Umebayashi T , Yamaki T , Tanaka S , et al . Chemistry Letters ,2003 , 32 : 330 —331
[81] Yu J C , Ho W, Yu J G, et al . Environ. Sci . Technol . , 2005 ,39 : 1175 —1179
[82] 籍宏伟(Ji H W) ,马万红(Ma W H) ,黄应平(Huang Y P) 等.科学通报(Chinese Sci . Bulletin) , 2003 , 48 : 2199 —2204
[83] Yu J C , Yu J , Ho W, et al . Chem. Mater. , 2002 , 14 : 3808 —3816
[84] Yamaki T , Umebayashi T , Sumita T , et al . Nucl . Instrum.Meth. Phys. Res. , 2003 , 306 : 254 —258
[85] Minero C , Mariella G, Maurino V , et al . Langmuir , 2000 , 16 :2632 —2641
[86] Minero C , Mariella G, Maurino V , et al . Langmuir , 2000 , 16 :8964 —8972
[87] Park H , Choi W. J . Phys. Chem. , 2004 , 108 : 4086 —4093
[88] Park J S , Choi W. Langmuir , 2004 , 20 : 11523 —11527
[89] Umebayashi T , Yamaki T , Itoh H , et al . Appl . Phys. Lett . ,2002 , 81 : 454 —456
[90] Umebayashi T , Yamaki T , Yamamoto S , et al . J . Appl . Phys. ,2003 , 93 : 5156 —5160
[91] Ohno T , Mitsui T , Matsumura M. Chem. Lett . , 2003 , 32 :364 —365
[92] Ohno T , Akiyoshi M, Umebayashi T , et al . Appl . Catal . A ,2004 , 265 : 115 —121
[93] Takashi T , Sachiko T , Kiyohiko K, et al . J . Phys. Chem. B ,2004 , 108 : 19299 —19306

[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[3] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[4] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[5] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[8] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[9] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[10] Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao. Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints [J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
[11] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[12] Timothy D. Huang. Condensed Matter Chemical Reactions in PaleoChemistry [J]. Progress in Chemistry, 2022, 34(7): 1626-1641.
[13] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[14] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[15] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.