中文
Announcement
More
Progress in Chemistry 2006, Vol. 18 Issue (11): 1523-1529 Previous Articles   Next Articles

• Review •

Fluorescent Nanoparticle Labeled Immunoassay

Juan Kang;Xinxiang Zhang**   

  1. College of Chemistry and Molecular Engineering,Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: Xinxiang Zhang
PDF ( 2103 ) Cited
Export

EndNote

Ris

BibTeX

Fluorescent nanoparticles are popular labels in immunoassay research. They effectively increase the number of fluorescers on a detection molecule and contribute to ultra high sensitivity. But there are many differences in labeling and immunoassay of nanoparticles from conventional fluorescent labels. This restrains their broad application in diagnosis. The labeling methods, immunological configurations and influence factors of fluorescent nanoparticles in recent years are reviewed.

CLC Number: 

[ 1 ] McKay I C , Forman D , White R G. Immunology , 1981 , 43 :591 —602
[ 2 ] Benchaib A , Delorme R , Pluvinage M, et al . Histochem. Cell Biol . , 1996 , 106 : 253 —256
[ 3 ] Morise H , Shimomura O , Johnson F H , et al . Biochemsitry ,1974 , 13 : 2656 —2662
[ 4 ] Soini E , Lovgren T. CRC Crit . Rev. Anal . Chem. , 1987 , 18 :105 —154
[ 5 ] Soini E. Trend Anal . Chem. , 1990 , 9 : 90 —93
[ 6 ] Xu Y Y, Hemmila I A , Lovgren T , et al . Analyst , 1991 , 116 :1155 —1158
[ 7 ] Xu Y Y, Hemmila I A. Anal . Chim. Acta , 1992 , 256 : 9 —16
[ 8 ] Diamandis E P , Morton R C , Reichstein E , et al . Anal . Chem. ,1989 , 61 : 48 —53
[ 9 ] Morton R C , Diamandis E P. Anal . Chem. , 1990 , 62 : 1841 —1845
[10] Qin Q P , Lo1vgren T , Pettersson K. Anal . Chem. , 2001 , 73 :1521 —1529
[11] Petrovas C , Daskas S M, Lianidou E S. Clin. Biochem. , 1999 ,32 : 241 —247
[12] Hall M, Kazakova I , Yao Y M. Anal . Biochem. , 1999 , 272 :165 —170
[13] Härmä H , Soukka T , Lênnberg S , et al . Luminescence , 2000 ,15 : 351 —355
[14] Tarkkinen T , H? rm? H , Lêvgren T. Anal . Chem. , 2001 , 73 :2254 —2260
[15] Härmä H , Soukka T , Lêvgren T. Clin. Chem. , 2001 , 47 :561 —568
[16] Soukka T , Paukkunen J , Härmä H , et al . Clin. Chem. , 2001 ,47 : 1269 —1278
[17] Yang W, Trau D , Renneberg R , et al . J . Colloid Interf . Sci . ,2001 , 234 : 356 —362
[18] Trau D , Yang W J , Seydack M, et al . Anal . Chem. , 2002 , 74 :5480 —5486
[19] Soukka T , Antonen K, H? rma H , et al . Clin. Chem. , 2002 ,48 : A75 part 2 suppl .
[20] Härmä H , Pelkkikangas A M, Soukka T , et al . Anal . Chim Acta , 2003 , 482 : 157 —164
[21] Feng J , Shan G M, Maquieira A , et al . Anal . Chem. , 2003 ,75 : 5282 —5286
[22] Matsuya T , Tashiro S , Kataoka K, et al . Anal . Chem. , 2003 ,75 : 6124 —6132
[23] Soukka T , Antonen K, Härmä H , et al . Clin. Chim. Acta ,2003 , 328 : 45 —58
[24] Koskinen J O , Vaarno J , Soini A E , et al . Anal . Biochem. ,2004 , 328 : 210 —218
[25] Ye Z Q , Tan M Q , Yuan J L , et al . Anal . Chem. , 2004 , 76 :513 —518
[26] Chan C P , Bruemme Y, Renneberg R , et al . Anal . Chem. ,2004 , 76 : 3638 —3645
[27] Kokko L , Lêvgren T , Soukka T , et al . Anal . Chim. Acta , 2004 ,503 : 155 —162
[28] Pelkkikangas A M, Jaakohuhta S , Härmä H , et al . Anal . Chim.Acta , 2004 , 517 : 169 —176
[29] Tan M Q , Ye Z Q , Yuan J L , et al . Chem. Mater. , 2004 , 16 :2494 —2498
[30] Huhtinen P , Pelkkikangas A M, Jaakohuhta S , et al . Clin.Chem. , 2004 , 50 : 1935 —1936
[31] Huhtinen P , Soukka T , Härmä H , et al . J . Immuno. Methods ,2004 , 294 : 111 —122
[32] Chana C P , Haeusslerb M, Renneberga R , et al . J . Immuno.Methods , 2004 , 295 : 111 —118
[33] Gordon W O , Carter J A , Tissue B M. J . Lumin. , 2004 , 108 :339 —342
[34] Ye Z Q , Tan M Q , Yuan J L , et al . J . Mater. Chem. , 2004 ,14 : 851 —856
[35] Tan M Q , Wang G L , Yuan J L , et al . J . Mater. Chem. , 2004 ,14 : 2896 —2901
[36] Bruemmel Y, Chan C P , Renneberg R. Langmuir , 2004 , 20 :9371 —9379
[37] Huhtinen P , Kuronen O , Härmä H. Anal . Chem. , 2005 , 77 :2643 —2648
[38] Ekins R P , Price C P , Newman D J . Principles and Practice of Immunoassay. London , UK: MaCmillan , 1997
[39] Mattoussi H , Mauro J M, Bawendi M G, et al . J . Am. Chem.Soc. , 2000 , 122 : 12142 —12151
[40] Fulton R J , McDade R L , Smith P L , et al . Clin. Chem. , 1997 ,43 : 1749 —1756
[41] Ullman E F , Kirakossian H , Wagner D B , et al . Clin. Chem. ,1996 , 42 : 1518 —1526
[42] Hart H E , Greenwald E B. Mol . Immunol . , 1979 , 16 : 265 —267
[43] Haninen P E , Soini A E , Soini E. Nat . Biotechnol . , 2000 , 18 :548 —550
[44] Niedbala R S , Feindt H , Kardos K, et al . Anal . Biochem. ,2001 , 293 : 22 —30
[45] Hirsch L R , Jackson J B , Lee A , et al . Anal . Chem. , 2003 ,75 : 2377 —2381
[46] Liu J M, Zhu G, Li L D , et al . Spectroc. Acta. A-Molec.Biomolec. Spectr. , 2005 , 61 : 923 —927

[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[5] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[6] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[7] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[8] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[9] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[10] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[11] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
[12] Yudong Yang, Jingsong You. Chelation-Assisted C—H/C—H Oxidative Cross-Coupling/Cyclization for the Construction of Fused(Hetero)aromatics [J]. Progress in Chemistry, 2020, 32(11): 1824-1834.
[13] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[14] Lixin Dai*. Ullmann Reaction,A Centennial Memory and Recent Renaissance——Related Formation of Carbon-Heteroatom Bond [J]. Progress in Chemistry, 2018, 30(9): 1257-1297.
[15] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.