中文
Announcement
More
Progress in Chemistry 2006, Vol. 18 Issue (11): 1397-1408   Next Articles

• Invited Article •

Polydiacetylene Vesicle —— A Device Based On Molecular Assembly for Biological Molecular Recognition

Jieli Deng;Caixin Guo;Wensheng Lu;Tao Liu;Long Jiang**   

  1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
  • Received: Revised: Online: Published:
  • Contact: Long Jiang
PDF ( 2297 ) Cited
Export

EndNote

Ris

BibTeX

Under UV irradiation, ordered diacetylene molecules can be polymerized and form polydiacetylene (PDA) vesicle. Generally speaking, optical absorption in PDA occurs via a π-to-π* absorption within the linear π-conjugated polymer backbone. When decorated with specific probe( receptors),PDA vesicles will undergo dramatic color changes from blue to red in the direct responding to the ligands on the surface of bio-molecules (eg. DNA, antibody-antigen and the bacteria)to be recognized by ligand-receptor binding at the interface and act as a “reporter” of molecular recognition . In some circumstances the red phase transition accompanies strong fluorescence. The unique chromatic properties of molecular recognition made PDA vesicles a promising biosensor and many biological species, such as virus, bacteria, lipolytic enzyme, antimicrobial peptide,mammalian peptide, ions, antibody-antigen and oligonucleotide etc. have been detected. PDA vesicles can also combine with nanogold for fabricating hollow spheres, which can be used as carrier of nanogold having a better performance for DNA immobilization, recognition and separation. With the improvement of detection conditions and influence factors, PDA vesicles of high sensitivity and high selectivity of recognition could be obtained, showing a great prospect to be applied as biosensors.

CLC Number: 

[ 1 ] Su Y L. Reactive &Functional Polymers , 2006 , 66 : 967 —973
[ 2 ] Huo Q , Russell K C , Leblanc R M. Langmuir , 1999 , 15 :3972 —3980
[ 3 ] Britt D W, Hoffmann U G, Mêbius D , et al . Langmuir , 2001 ,17 : 3757 —3765
[ 4 ] Okada S , Peng S , Spevak W, et al . Acc. Chem. Res. , 1998 ,31 : 229 —239
[ 5 ] http://www.slic2.wsu.edu:82/hurlbert/micro101/pages/chap10.html
[ 6 ] Charych D H , Nagy J O , Spevak W. Science , 1993 , 261 : 585 —588
[ 7 ] Reichert A , Nagy J O , Spevak W, et al . J . Am. Chem. Soc. ,1995 , 117 : 7301 —7306
[ 8 ] Pan J J , Charych D. Langmuir , 1997 , 13 : 1365 —1367
[ 9 ] Yun K J , Hyun G, Jong M K. Biosensors and Bioelectronics ,2006 , 21 : 1536 —1544
[10] Rangin M, Basu A. J . Am. Chem. Soc. , 2004 , 126 : 5038 —5039
[11] Ma Z F , Li J R , Liu M H , et al . J . Am. Chem. Soc. , 1998 ,120 : 12678 —12679
[12] Su YL , Li J R , Jiang L. J . Colloid Interface Sci . , 2005 , 284 :114 —119
[13] Kolusheva S , Boyer L , Jelinek R. Nat . Biotechnol . , 2000 , 18 :225 —227
[14] Kolusheva S , Kafri R , Katz M, et al . J . Am. Chem. Soc. ,2001 , 123 : 417 —422
[15] Su YL , Li J R , Jiang L. Colloids Surf . B , 2004 , 38 : 29 —33
[16] Wang C G, Ma Z B. Anal . Bioanal . Chem. , 2005 , 382 :1708 —1710
[17] Kolusheva S , Shahal T , Jelinek R. J . Am. Chem. Soc. , 2000 ,122 : 776 —780
[18] Carpick R W, Sasaki D Y, Burns A R. Langmuir , 2000 , 16 :1270 —1278
[19] Carpick R W, Mayer T M, Sasaki D Y, et al . Langmuir , 2000 ,16 : 4639 —4647
[20] Morigaki K, Baumgart T , Jonas U , et al . Langmuir , 2002 , 18 :4082 —4089
[21] Kolusheva S , Molto O , Herm M, et al . J . Am. Chem. Soc. ,2005 , 127 : 10000 —10001
[22] KimJ M, Lee Y B , Yang D H , et al . J . Am. Chem. Soc. ,2005 , 127 : 17580 —17581
[23] Lu W S , Wang W, Su Y L , et al . Nanotechnology , 2005 , 16 :2582 —2586
[24] Stanish I , Santos J P , Singh A. J . Am. Chem. Soc. , 2001 ,123 : 1008 —1009
[25] KimJ M, Ji E K, Woo S M, et al . Adv. Mater. , 2003 , 15 :1118 —1121
[26] Lu Y F , Yang Y, Sellinger A , et al . Nature , 2001 , 140 : 913 —917
[27] Yang Y, Lu Y F , Huang J M, et al . J . Am. Chem. Soc. ,2003 , 125 : 1269 —1277
[28] Yamanaka S A , Charych D H , Loy D A , et al . Langmuir , 1997 ,13 : 5049 —5053
[29] Gill I , Ballesteros A. Angew. Chem. Int . Ed. Engl . , 2003 ,42 : 3264 —3267
[30] Peng T Z , Cheng Q , Stevens R C. Anal . Chem. , 2000 , 72 :1611 —1617
[31] Cheng Q , Peng T Z , Stevens R C. J . Am. Chem. Soc. , 1999 ,121 : 6767 —6768
[32] Li Y J , Ma B L , Fan Y, et al . Anal . Chem. , 2002 , 74 : 6349 —6354
[33] Morigaki K, Baumgart T , Jones U , et al . Langmuir , 2002 , 18 :4082 —4089
[34] Morigaki K, Schênherr H , Frank C W, et al . Langmuir , 2003 :6994 —7002
[35] Mino N , Tamura H , Ogaws K. Langmuir , 1991 , 7 : 2336 —2341
[36] Mino N , Tamura H , Ogaws K. Langmuir , 1992 , 8 : 594 —598
[37] Deckert A A , Horne J C , Valentine B , et al . Langmuir , 1995 ,11 : 643 —649
[38] Lio A , Reichert A , Ahn D J , et al . Langmuir , 1997 , 13 :6524 —6532
[39] Carpick R W, Mayer TM, Sasaki D Y, et al . Langmuir , 2000 ,16 : 4639 —4647
[40] Cheng Q , Stevens R C. Langmuir , 1998 , 14 : 1974 —1976
[41] Chang Q , Yamamoto M, Stevens R C. Langmuir , 2000 , 16 :5333 —5342
[42] Song J , Cheng Q , Kopta S , et al . J . Am. Chem. Soc. , 2001 ,123 : 3205 —3213
[43] Song J , Cisar J S , Bertozzi C R. J . Am. Chem. Soc. , 2004 ,126 : 8459 —8465
[44] Nallicheri R A , Rubner M F. Macromoleculers , 1991 , 24 : 517 —525
[45] Nallicheri R A , Rubner M F. Macromoleculers , 1991 , 24 : 526 —529
[46] Su Y L , Li J R , Jiang L. Colloids and Surfaces B : Biointerfaces ,2004 , 39 : 113 —118
[47] Su Y L , Li J R , Jiang L. Colloid Interface A , 2005 , 257P258 :25 —30
[48] Ma Z B , Li J R , Jiang L , et al . Langmuir , 2000 , 16 : 7801 —7804
[49] Charych D , Cheng Q , Reichert A , et al . Chem. Biol . , 1996 , 3 :113 —120
[50] Guo C X, Jiang L. J . Phys. Chem. B , 2005 , 109 : 18765 —18771

[1] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[2] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[3] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[4] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[5] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[6] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[7] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[8] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[9] Yang Wang, Po Hu, Shuai Zhou, Jiajun Fu. Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2021, 33(7): 1221-1237.
[10] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[11] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[12] Shijia Li, Ernan Pang, Caihong Hao, Tingting Cai, Shengliang Hu. Preparation of Solid-State Fluorescent Carbon Dots [J]. Progress in Chemistry, 2020, 32(5): 548-561.
[13] Yuehua Yuan, Yongjun Zhu, Wei Hu, Jun Qin, Maozhong Tian, Feng Feng. Double Recognition Fluorescence Probes for Copper and Mercury Ions Based on Small Molecules [J]. Progress in Chemistry, 2019, 31(4): 550-560.
[14] Yang Shen, Jiwen Hu, Tingting Liu, Hongwen Gao, Zhangjun Hu. Colorimetric and Fluorogenic Chemosensors for Mercury Ion Based on Nanomaterials [J]. Progress in Chemistry, 2019, 31(4): 536-549.
[15] Xiaofu Wu, Hui Tong, Lixiang Wang. Fluorescent Polymer Materials for Detection of Explosives [J]. Progress in Chemistry, 2019, 31(11): 1509-1527.