中文
Announcement
More
Progress in Chemistry 2006, Vol. 18 Issue (0708): 987-994 Previous Articles   Next Articles

• Review •

Mechanisms of DNA Separation by Capillary Electrophoresis in Non-Gel Sieving Matrices

Dan Zhou;Yanmei Wang**   

  1. Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China

     

  • Received: Revised: Online: Published:
  • Contact: Yanmei Wang
PDF ( 1487 ) Cited
Export

EndNote

Ris

BibTeX

Fast, highly efficient, and sensitive separation technique is crucial for DNA analysis. The capillary electrophoresis using non-gel sieving matrices is one of the most important techniques for DNA separation. The uncrosslinked polymer solutions are generally used as sieving matrices. Based on the introduction of the theory of the polymer solutions, the mechanisms of DNA separation by the capillary electrophoresis in non-gel sieving matrices (entangled and dilute solutions) are reviewed in this paper, which includes Ogston sieving model, various modified reptation models, transient entanglement coupling mechanisms and its improved mechanisms.

CLC Number: 

[ 1 ] 秦向东(Qin X D) , 裴静(Pei J ) , 沈建红(Shen J H) 等. 现代仪器(Modern Instruments) , 2001 , 6 : 9 —12
[ 2 ] Albarghouthi M N. PhD Thesis of Northwestern University , 2002
[ 3 ] 王前(Wang Q) , 许旭( Xu X) . 化学进展( Progress in Chemistry) , 2003 , 15 : 275 —287
[ 4 ] Sartori A , Barbier V , Viovy J L. Electrophoresis , 2003 , 24 :421 —440
[ 5 ] Chu B , Liang D. J . Chromatogr. A , 2002 , 966 : 1 —13
[ 6 ] Ashton R , Padala C , Kane R S. Current Opinion in Biotechnology , 2003 , 14 : 497 —504
[ 7 ] Cohen A S , Najarian D R , Paulus A , Guttman A , Smith J A ,Karger B L , Proc. Natl . Acad. Sci . USA , 1988 , 85 : 9660 —9663
[ 8 ] Motsch S R , Kleemib M H , Schomburg G. J . High Resol .Chromatogr. , 1991 , 14 : 629 —632
[ 9 ] Zhou H , Miller A W, Sosic Z , Buchholz B , Barron A E , Kotler L , Karger B L. Anal . Chem. , 2000 , 72 : 1045 —1052
[10] Song L G, Liang D H , Fang D F , Chu B. Electrophoresis , 2001 ,22 : 1987 —1996
[11] Chang H T , Yeung E S. J . Chromatogr. B , 1995 , 669 : 113 —123
[12] Gao Q F , Yeung E S. Anal . Chem. , 2000 , 72 : 2499 —2506
[13] Gelfi C , Vigano A , Palma S D , et al . Electrophoresis , 2002 , 23 :1517 —1523
[14] De Gennes P G. Scaling Concepts in Polymer Physics. Ithaca , N Y: Cornell Univ. Press , 1979
[15] Chiari M, Melis A. Trends in Analytical Chemistry , 1998 , 17 :623 —632
[16] Xu F , Baba Y. Electrophoresis , 2004 , 25 : 2332 —2345
[17] Kurata M, Tsunashima Y. Polymer Handbook (eds. Brandrup J ,Immergut E H) . New York : John Wiley , 1989. ⅦP1 —ⅦP46
[18] Viovy J L , Duke T. Electrophoresis , 1993 , 14 : 322 —329
[19] Viovy J L , Heller C. Capillary Electrophoresis : An Analytical Tool in Biotechnology , Analytical Biotechnology Series ( ed.Righetti P G) . Boca Raton : CRC Press , 1996. 477 —508
[20] Grossman P D , Soane D S. Biopolymers , 1991 , 31 : 1221 —1228
[21] Broseta D , Leibler L , Lapp A , Strazielle C. Europhys. Lett . ,1986 , 2 : 733 —737
[22] Ogston A G. Trans. Faraday Soc. , 1958 , 54 : 1754 —1757
[23] Rodbard D , Chrambach A. Proc. Natl . Acad. Sci . USA , 1970 ,4 : 970 —977
[24] Rodbard D , Chrambach A. Anal . Biochem. , 1971 , 40 : 95 —134
[25] Lunney J , Chrambach A , Rodbard D. Anal . Biochem. , 1971 ,40 : 158 —173
[26] Slater G W, Rousseu J , Noolandi J , et al . Biopolymers , 1988 ,27 : 509 —524
[27] Slater G W, Noolandi J . Biopolymers , 1989 , 28 : 1781 —1791
[28] Ferguson K A. Metabolism, 1964 , 13 : 985 —1002
[29] De Gennes P G. J . Chem. Phys. , 1971 , 55 : 572 —579
[30] Slater G W, Steve G, Michel G G, et al . Electrophoresis , 2002 ,23 : 3791 —3816
[31] Slater G W, Noolandi J . Biopolymers , 1986 , 25 : 431 —454
[32] Lumpkin O J , Dejardin P , Zimm B H. Biopolymers , 1985 , 24 :1573 —1593
[33] Slater G W, Noolandi J . Phys. Rev. Lett . , 1985 , 55 : 1579 —1585
[34] Duke T A J , Semenov A N , Viovy J L. Phys. Rev. Lett . , 1992 ,69 : 3260 —3263
[35] Duke T , Viovy J L , Semenov A N. Biopolymers , 1994 , 34 :239 —247
[36] Duke T , Viovy J L. Phys. Rev. E , 1994 , 49 : 2408 —2416
[37] Semenov A N , Duke T A J , Viovy J L. Phys. Rev. E , 1995 ,51 : 1520 —1537
[38] Heller C , Duke T , Viovy J L. Biopolymers , 1994 , 34 : 249 —259
[39] Barkema G T , Marko J F , Widom B. Phys. Rev. , 1994 , 49 :5303 —5309
[40] Viovy J L. Rev. Mod. Phys. , 2000 , 72 : 813 —872
[41] Cottet H , Gareil P , Viovy J L. Electrophoresis , 1998 , 19 :2151 —2162
[42] Bae Y C , Soane D. J . Chromatogr. , 1993 , 652 : 17 —22
[43] Slater G W, Kenward M, McCormick L C , et al . Current Opinion in Biotechnology , 2003 , 14 : 58 —64
[44] Muthukumar M, Baumgrtner A. Macromolecules , 1989 , 22 :1937 —1941
[45] Muthukumar M, Baumgrtner A. Macromolecules , 1989 , 22 :1941 —1946
[46] Hoagland D A , Muthukumar M. Macromolecules , 1992 , 25 :6696 —6698
[47] Zimm B H. J . Chem. Phys. , 1991 , 94 : 2187 —2206
[48] Barron A E , Soane D S , Blanch H W. J . Chromatogr. A , 1993 ,652 : 3 —16
[49] Barron A E , Blanch H W, Soane D S. Electrophoresis , 1994 ,15 : 597 —615
[50] Barron A E , Sunada W M, Blanch H W. Electrophoresis , 1995 ,16 : 64 —74
[51] Barron A E , Sunada W M, Blanch H W. Electrophoresis , 1996 ,17 : 744 —757
[52] Hubert S , Slater G, Viovy J L. Macromolecules , 1996 , 29 :1006 —1009
[53] Shi X L , Hammond R W, Morris M D. Anal . Chem. , 1995 , 67 :1132 —1138
[54] Todorov T I , de Carmejane O , Walter N G, et al .Electrophoresis , 2001 , 22 : 2442 —2447
[55] Sunada W M, Blanch H W. Biotechnol . Progr. , 1998 , 14 :766 —772
[56] Sunada W M, Blanch H W. Electrophoresis , 1998 , 19 : 3128 —3136
[57] Jung H J , Bae Y C. J . Chromatogr. A , 2002 , 967 : 279 —287
[58] Nkodo A E , Tinland B. Electrophoresis , 2002 , 23 :2755 —2765
[59] Huang M F , Kuo Y C , Huang C C , et al . Anal . Chem. , 2004 ,76 : 192 —196
[60] Lin Y W, Huang M F , Chang H T. Electrophoresis , 2005 , 26 :320 —330
[61] Jin Y, Lin B C , Fung Y S. Fresenius’J . Anal . Chem. , 2001 ,370 : 1015 —1022
[62] Nkodo A E , Tinland B. Electrophoresis , 2001 , 22 : 2424 —2432
[63] Nkodo A E. PhD Thesis , L’Universite Louis Pasteur , 2001
[64] Heller C. Electrophoresis , 2001 , 22 : 629 —643
[65] Huang X C , Quesada M A , Mathies R A. Anal . Chem. , 1992 ,64 : 2149 —2154
[66] Ashton R , Padala C , Kane R S. Current Opinion in Biotechnology , 2003 , 14 : 497 —504

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[3] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[4] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[5] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[6] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[7] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[8] Yue Liu, Yihan Wu, Hongwei Pang, Xiangxue Wang, Shujun Yu, Xiangke Wang. Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials [J]. Progress in Chemistry, 2019, 31(6): 831-846.
[9] Lin Han, Baoliang Chen*. Generation Mechanism and Fate Behaviors of Environmental Persistent Free Radicals [J]. Progress in Chemistry, 2017, 29(9): 1008-1020.
[10] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[11] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[12] Qi Huabiao, Zhou Guangzheng, Yu Fuhai, Ge Wei, Li Jinghai. Researches on Mixing of Granular Materials with Discrete Element Method [J]. Progress in Chemistry, 2015, 27(1): 113-124.
[13] Niu Fanfan, Nie Changjun, Chen Yong, Sun Xiaoling. Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins [J]. Progress in Chemistry, 2014, 26(12): 1942-1961.
[14] Xie Yingjuan, Wu Zhijiao, Zhang Xiao, Ma Peijun, Piao Lingyu. Synthesis and Photocatalytic Mechanisms of the Mixed-Phase TiO2 Photocatalysts [J]. Progress in Chemistry, 2014, 26(07): 1120-1131.
[15] Zhu Lin, Chen Qiang, Xu Kun. Toughening Mechanisms of High Strength Double Network Hydrogels [J]. Progress in Chemistry, 2014, 26(06): 1032-1038.