中文
Announcement
More
Progress in Chemistry 2006, Vol. 18 Issue (0708): 1026-1033 Previous Articles   Next Articles

• Review •

Direct-hydrocarbon Solid Oxide Fuel Cell

Jiang Liu   

  1. College of Chemistry, South China University of Technology, Guangzhou 510640, China
  • Received: Revised: Online: Published:
  • Contact: Jiang Liu
PDF ( 2792 ) Cited
Export

EndNote

Ris

BibTeX

Direct-hydrocarbon solid oxide fuel cell (D-HC SOFC) can directly operate on low-cost and readily available hydrocarbon fuels without reforming. With high power density and low operation cost, D-HC SOFC has the potential of greatly speeding the application of solid oxide fuel cells (SOFC) in portable devices, back-up power supplies, auxiliary power units (APU) and distributed-power stations. At the beginning of this paper, the principle of SOFC is briefly introduced followed by a thermodynamic analysis on the feasibility of D-HC SOFC. Then, the status of D-HC SOFC research and development is reviewed. It is showed that most of the research on D-HC SOFC has been focused on avoiding carbon deposition caused by pyrolysis of hydrocarbon fuels at elevated operating temperatures. There are three ways to remove carbon in D-HC SOFC: lowering operating temperature, using proper catalyst that can suppress carbon formation reaction in anodes, and promoting electrochemical oxidation by running SOFC at large enough current. Some works on the anode reaction mechanism are also described. Finally, the author’s view on further research and development on D-HC SOFC is presented, that more work is required in D-HC SOFC stacks and anode reaction mechanisms associated with gas (including reactants and products and any other kind of gases produced during SOFC operation) distributions in SOFC.

CLC Number: 

[ 1 ] 吴川(Wu C) , 张华民(Zhang HM) , 衣宝廉(Yi B L) . 化学进展(Progress in Chemistry) , 2005 , 17(3) : 423 —429
[2] Armor J N. Appl . Catal . A-Gen. , 1999 , 176 : 159 —176
[3] Schulte I , Hart D , Vorst R. Int . J . Hydrogen Energy , 2004 , 29 :677 —685
[4] Ogden J M. Annu. Rev. Energ. Env. , 1999 , 24 : 227 —279
[5] 张斌(Zhang B) , 倪维斗(Ni W D) , 李政(Li Z) . 中国动力工程学报( Chinese Journal of Power Engineering ) , 2005 , 25(1) : 141 —146
[6] 左政(Zuo Z) , 华贲(Hua B) . 煤气与热力( Gas and Heat) ,2005 , 25(1) : 35 —42
[7] Larminie J , Dicks A. Fuel Cell Systems Explained. Chichester :John Wiley &Sons , Ltd. , 2002. 188 —199
[8] 乔金硕(Qiao J S) , 孙克宁(Sun K N) , 张乃庆(Zhang N Q) ,周德瑞( Zhou R D) . 化工进展( Chemical Industry and Engineering Progress) , 2004 , 23(11) : 1189 —1194
[9] Nabae Y, Yamanaka I , Hatano M, et al . J . Electrochem. Soc. ,2006 , 153 (1) : A140 —A145
[10] Larrondo S , Vidal M A , Irigoyen B , et al . Catalysis Today ,2005 , 107 (8) : 53 —59
[11] Costa-Nunes O , Gorte R J , Vohs J . Power Sources , 2005 , 141(2) : 241 —249
[12] Krishnan V V , McIntosh S , Gorte R J , et al . Solid State Ionics ,2004 : 166 (1/2) : 191 —197
[13] McIntosh S , He H P , Lee S I , et al . J . Electrochem. Soc. ,2004 , 151 (4) : A604 —A608
[14] McIntosh S , Gorte R J . Chem. Rev. , 2004 , 104 : 4845 —4865
[15] Minh N Q. J . Am. Ceram. Soc. , 1993 , 76(3) : 563 —588
[16] 江义(Jiang Y) , 李文钊(Li W Z) , 王世忠(Wang S Z) . 化学进展(Progress in Chemistry) , 1997 , 9 (4) : 387 —396
[17] Sasaki K, Teraoka Y. J . Electrochem. Soc. , 2003 , 150 (7) :A878 —A884
[18] Sasaki K, Teraoka Y. J . Electrochem. Soc. , 2003 , 150 (7) :A885 —A888
[19] Finnerty C M, Coe N J , Cunningham R H , Ormerod R M.Catalysis Today , 1998 , 46 : 137 —145
[20] Murray E P , Tsai T , Barnett S A. Nature , 1999 , 400 : 649 —651
[21] Park S , Vohs J M, Gorte R J . Nature , 2000 , 404 : 265 —267
[22] Murray E P , Tsai T , Barnett S A. Proc. 6th Int . Symp. on Solid Oxide Fuel Cells ( eds. Singhal S C , Dokiya M ) . Pennington :Electrochem. Soc. , 1999. 1001 —1010
[23] Steele B C H , Middleton P H , Tudkin R A. Solid State Ionics ,1990 , 40/41 : 388 —393
[24] Godickemeier M, Sasaki K, Gauckler L J . Proc. 4th Int . Symp.on Solid Oxide Fuel Cells (eds. Dokiya M, Yamamoto O , Tagawa H , Singhal S C) . Pennington : Electrochem. Soc. , 1995.1072 —1081
[25] Hori C E , Permana H , Ng K Y S , et al . Appl . Catal . B , 1998 ,16 (2) : 105 —117
[26] Xia C R , Chen F L , Liu M L. Electrochem. Solid State Letters ,2001 , 4(5) : A52 —A54
[27] Jiang Y, Virkar A V. J . Electrochem. Soc. , 2001 , 148 :A706 —A709
[28] Park S , Gorte R J , Vohs J M. Appl . Catal . A , 2000 , 200 : 55 —61
[29] Kim H , Park S , Vohs J M, Gorte R J . J . Electrochem. Soc. ,2001 , 148 : A693 —A695
[30] Wang C , Worrell W L , Park S , Vohs J M, Gorte R J . J .Electrochem. Soc. , 2001 , 148 : A864 —A868
[31] Gorte R J , Vohs J M, McIntosh S. Solid State Ionics , 2004 , 175(1/4) : 1 —6
[32] Atkinson A , Barnett S A , Gorte R J , et al . Nature Materials ,2004 , 3 (1) : 17 —27
[33] Gorte R J , Vohs J M. J . Catal . , 2003 , 216 (1/2) : 477 —486
[34] Gorte R J , Kim H , Vohs J M. J . Power Sources , 2002 , 106 (1/2) : 10 —15
[35] Itome M, Nelson A E. Catalysis Letters , 2006 , 106 : 21 —27
[36] Baker R T , Metcalfe I S. Appl . Catal . A , 1995 , 126 : 297 —317
[37] Norby T , Osborg P A , Dyrlie O , Hildrum R , Seiersten M,Glenne R. in Proc. 1st European Solid Oxide Fuel Cell Forum (ed. Bossel U) . Kinzel , Gottingen , 1994. 217 —221
[38] Primdahl S , Hansen J R , Grahl-Madsen L , Larsen P H. J .Electrochem. Soc. , 2001 , 148 : A74 —A81
[39] Marina O A , Bagger C , Primdahl S , et al . Solid State Ionics ,1999 , 123 (1/4) : 199 —208
[40] Liu J , Madsen B D , Ji Z , Barnett S A. Electrochem. Solid State Letters , 2002 , 5 (6) : A122 —A124
[41] Huang Y H , Dass R I , Xing Z L , Goodenough J B. Science ,2006 , 312 (5771) : 254 —257
[42] Liu J , Barnett S A. Solid State Ionics , 2003 , 158(1P2) : 11 —16
[43] Lin Y B , Zhan Z L , Liu J , Barnett S A. Solid State Ionics ,2005 , 176 : 1827 —1835
[44] Aida T , Abudala A , Ihara M, Komiyama H , Yamada K. Proc.4th Int . Symp. on Solid Oxide Fuel Cells ( eds. Dokiya M,Yamamoto O , Tagawa H , Singhal S C ) . Pennington :Electrochem. Soc. , 1995. 801 —809
[45] Horita T , Sakai N , Kawada T , Yokokawa H , Dokiya M. J .Electrochem. Soc. , 1996 , 143 : 1161 —1168
[46] Zhan Z L , Barnett S A. Solid State Ionics , 2005 , 176 (9/10) :871 —879
[47] Murray E P , Harris S J , Liu J , et al . Electrochem. Solid St . ,2005 , 8 (10) : A531 —A533
[48] Zhan Z L , Barnett S A. Science , 308 (5723) : 844 —847
[49] Zhan ZL , Liu J , Barnett S A. Appl . Catal . A , 2004 , 262 (2) :255 —259
[50] 马紫峰(Ma Z F) , 黄碧纯(Huang B C) , 廖小珍(Liao X Z)等. 电源技术(Chinese J . Power Sources) , 1999 , 23 (3) :164 —166
[51] 马紫峰(Ma Z F) , 林维明(Lin W M) , 黄传荣(Huang C R)等. 电源技术(Chinese J . Power Sources) , 1994 , (1) : 10 —19
[52] 马紫峰(Ma Z F) , 林卓 (Lin Z Y) , 张煜(Zhang Y) , 林维明(Lin WM) . 电源技术(Chinese J . Power Sources) , 1996 ,20 (3) : 99 —103
[53] 毕忠合(Bi Z H) , 程谟杰(Cheng M J ) , 吴合进(Wu H J )等. 高等学校化学学报( Chemical Journal of Chinese Universities) , 2005 , 26 (6) : 1110 —1113
[54] Wang Z W, Cheng M J , Dong Y L , et al . Solid State Ionics ,2005 , 176 (35/36) : 2555 —2561
[55] Zhang Y, Liu B , Tu B F , et al . Solid State Ionics , 2005 , 176(29/30) : 2193 —2199
[56] Wang Y S , Nie H W, Wang S R , et al . Materials Letters , 2006 ,60 (9/10) : 1174 —1178
[57] Zheng R , Zhou X M, Wang S R , et al . J . Power Sources , 2005 ,140 (2) : 217 —225
[58] Yin YH , Li S Y, Xia C R , et al . Electrochimica Acta , 2006 , 51(13) : 2594 —2598
[59] 闫瑞强(Yan R Q) , 李灵(Li L) , 刘杏芹(Liu X Q) 等. 无机化学学报(Chinese Journal of Inorganic Chemistry) , 2006 , 22(3) : 542 —545
[60] Xu X Y, Xia C R , Mao G L , et al . Solid State Ionics , 2005 , 176(17/18) : 1513 —1520
[61] Xu J H , Huang X Q , Lu Z , et al . Acta Chimica Sinica , 2006 ,64 (5) : 449 —452
[61] Zhang Y H , Huang X Q , Lu Z , et al . Solid State Ionics , 2006 ,177 (3/4) : 281 —287
[63] Wei B , Lu Z , Li S Y, et al . Electrochem. Solid St . , 2005 , 8(8) : A428 —A431
[64] Zhang J D , Ji Y, Gao H B , et al . J . Alloys Comp. , 2005 , 395(1/2) : 322 —325
[65] He T M, Guan P F , Cong L G, et al . J . Alloys Comp. , 2005 ,393 (1/2) : 292 —298

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[5] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[6] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[7] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[8] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[9] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[10] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[11] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[12] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[13] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[14] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[15] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
Viewed
Full text


Abstract

Direct-hydrocarbon Solid Oxide Fuel Cell