中文
Announcement
More
Progress in Chemistry 2006, Vol. 18 Issue (06): 823-831 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Research of Explosion Mechanism of Lithium-Ion Battery

Yuhong Chen1;Zhiyuan Tang1**;Xinghe Lu1,2;Caiyuan Tan1   

  1. 1. Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Hebei University of Engineering, Handan 056038, China
  • Received: Revised: Online: Published:
  • Contact: Zhiyuan Tang
PDF ( 5116 ) Cited
Export

EndNote

Ris

BibTeX

One of the obstacles to commercialize high capacity and high power lithium-ion batteries is safety properties. The explosion of battery results from the heat and pressure accumulation by internal component reactions under abuse conditions, such as overheating, overcharge, short-circuit and so on. In this paper, the main heat sources are summarized, such as cathode and anode decomposition, electrolyte decomposition, the reaction between electrolyte and electrodes. The explosion mechanism of lithium-ion battery is analyzed under high temperature heat test, overcharge and short-circuit. The measures to improve battery safety are suggested.

CLC Number: 

[ 1 ] Tobishima S I , Yamaki J I. J . Power Sources , 1999 , 81/82 :882 —886
[ 2 ] 郭炳 (Guo B K) , 徐徽(Xu H) , 王先友(Wang X Y) 等. 锂离子电池(Lithium Ion Battery) . 长沙: 中南大学出版社(Changsha : Central South University Press ) , 2002. 34 —36
[ 3 ] Richard M N , Dahn J R. J . Electrochem. Soc. , 1999 , 146(6) :2068 —2077
[ 4 ] MacNeil D D , Larcher D , Dahn J R. J . Electrochem. Soc. ,1999 , 146 (10) : 3596 —3602
[ 5 ] Maleki H , Deng G, Anani A , et al . J . Electrochem . Soc. ,1999 , 146 (9) : 3224 —3229
[ 6 ] Zhang Z , Fouchard D , Rea J R. J . Power Sources , 1998 , 70 :16 —20
[ 7 ] Biensan P , Simon B , Peres J P , et al . J . Power Sources , 1999 ,81/82 : 906 —912
[ 8 ] Jiang J W, Dahn J R. Electrochimica Acta , 2004 , 49 : 4599 —4604
[ 9 ] Pasquier A D , Disma F , Bowmer T , et al . J . Electrochem.Soc. , 1998 , 145 (2) : 472 —477
[10] Maleki H , Deng G, Kerzhner/Haller I , et al . J . Electrochem.Soc. , 2000 , 147 (12) : 4470 —4475
[11] Kawamura T , Kimura A , Egashira M, et al . J . Power Sources ,2002 , 104 : 260 —264
[12] Hasegawa K, Arakawa Y. J . Power Sources , 1993 , 43/44 :523 —529
[13] Gnanaraj J S , Zinigrad E , Asraf L , et al . J . Power Sources ,2003 , 119P121 : 794 —798
[14] 杨瑞敏(Yang R M) , 叶劲草(Ye J C) , 杨姝( Yang S) 等. 电源技术(Chin. J . Power Sources) , 1999 , 23(2) : 128 —130
[15] Hayashi K, Nemoto Y, Tobishima S I , et al . Electrochimica Acta , 1999 , 44 : 2337 —2344
[16] Antolini E , Ferretti M. J . Solid State Chem. , 1995 , 117 : 1 —7
[17] 田彦文(Tian Y W) , 高虹(Gao H) , 翟玉春(Zhai Y C) 等. 无机材料学报(J . Inorganic Materials) , 2000 , 15 (6) : 1050 —1054
[18] 文衍宣(Wen Y X) , 周开文(Zhou K W) , 栗海峰(Li H F) 等.无机材料学报(J . Inorganic Materials) , 2005 , 20 (2) : 359 —366
[19] Baba Y, Okada S , Yamaki J I. So1id State Ionics , 2002 , 148 :311 —316
[20] MacNeil D D , Dahn J R. J . E1ectrochem. Soc. , 2001 , 148(11) : A1205 —A1210
[21] MacNeil D D , Dahn J R. J . E1ectrochem . Soc. , 2001 , 148(11) : A1211 —A1215
[22] Lee K K, Yoon W S , Kim K B , et al . J . Electrochem. Soc. ,2001 , 148 (7) : A716 —A722
[23] Lee K K, Yoon W S , Kim KB , et al . J . Power Sources , 2001 ,97P98 : 321 —325
[24] Arai H , Okada S , Sakurai Y, et al . Solid State Ionics , 1998 ,109 : 295 —302
[25] Roth E P , Doughty D H , Franklin J . J . Power Sources , 2004 ,134 : 222 —234
[26] MacNeil D D , Lu Z H , Chen Z H , et al . J . Power Sources ,2002 , 108 : 8 —14
[27] KimJ S , Prakash J , Selman J R. Electrochemical and Solid/State Letters , 2001 , 4(9) : A141 —A144
[28] Tobishima S I , Takei K, Sakurai Y, et al . J . Power Sources ,2000 , 90 : 188 —195
[29] Spotnitz R , Franklin J . J . Power Sources , 2003 , 113 : 81 —100
[30] Saito Y, Takano K, Negishi A. J . Power Sources , 2001 , 97/98 :693 —696
[31] SatoY, Nakano T , Kobayakawa K, et al . J . Power Sources ,1998 , 75 : 271 —277
[32] 徐仲榆(Xu Z Y) , 郑洪河(Zheng H H) . 电源技术(Chinese Journal of Power Sources) , 2000 , 24(3) : 47 —53
[33] Yokoyama K, Sasano T , Hiwara A. US 6 010 806 , 2000
[34] Narang S C , Ventura S C , Dougherty B J . US 5 830 600 , 1998
[35] Stux A M, Barker J . US 5 707 760 , 1998
[36] Ahn S , Kim Y, Kim K J , et al . J . Power Sources , 1999 , 8l/82 :896 —901
[37] Feng X M, Ai X P , Yang H X. Electrochemistry Communication ,2004 , 6 : 1021 —1024
[38] 吴国良(Wu G L) , 杨新河( Yang X H) , 金维华(Jin W H) .电池(Battery Bimonthly) , 1998 , 28(6) : 258 —262
[39] Mao H Y. US 5 879 834 , 1999
[40] Tobishima S , Ogino Y, Watanabe Y. J . Appl . Electrochem. ,2003 , 33 : 143 —150
[41] Abraham K M, Pasquariello D M, Willstaedt E B. J .Electrochem. Soc. , 1990 , 137 : 1856 —1860
[42] Cha C S , Al X P , Yang H X . J . Power Sources , 1995 , 54 :255 —258
[43] Abraham K M, Rohan J F , Foo C C , et al . EP 0 825 663 , 1998
[44] Kerr J B , Tian M. US 6 045 952 , 2004
[45] 胡广侠( Hu G X) , 解晶莹( Jie J Y) . 电化学(Electrochemistry) , 2002 , 8(3) : 245 —251

[1] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[2] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[3] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[4] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[5] Wei Zhang, Xiaopeng Qi, Sheng Fang, Jianhua Zhang, Bimeng Shi, Juanyu Yang. Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 454-466.
[6] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[7] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[8] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[9] Baodong Zhao, Fulei Gao, Yinglei Wang, Yajing Liu, Bin Chen, Yongfei Pan. Azido Energetic Plasticizers for Gun and Rocket Propellants [J]. Progress in Chemistry, 2019, 31(2/3): 475-490.
[10] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[11] Jiao Lin, Chunwei Liu, Hongbin Cao, Li Li, Renjie Chen, Zhi Sun. Recovery of Spent Lithium Ion Batteries Based on High Temperature Chemical Conversion [J]. Progress in Chemistry, 2018, 30(9): 1445-1454.
[12] Shuaijin Wu, Juanyu Yang, Bing Yu, Sheng Fang, Zhaohui Wu, Bimeng Shi. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2/3): 272-285.
[13] Ma Guoqiang, Wang Li, Zhang Janjun, Chen Huichuang, He Xiangming, Ding Yuansheng. Lithium-Ion Battery Electrolyte Containing Fluorinated Solvent and Additive [J]. Progress in Chemistry, 2016, 28(9): 1299-1312.
[14] Ming Hai, Ming Jun, Qiu Jingyi, Yu Zhongbao, Li Meng, ZhengJunwei. Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium [J]. Progress in Chemistry, 2016, 28(2/3): 204-218.
[15] Niu Jin, Zhang Su, Niu Yue, Song Huaihe, Chen Xiaohong, Zhou Jisheng. Silicon-Based Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(9): 1275-1290.