中文
Announcement
More
Progress in Chemistry 2006, Vol. 18 Issue (05): 680-686 Previous Articles   

• Special issues •

Thermochemistry of Microporous and Mesoporous Materials

Qinghua Li Jingwei Wang Hao Yuan Lili Xie Lijun Wang Alexandra Navrotsky   

  1. Department of Environmental Engineering, Shanghai Second Polytechnic University Department of Environmental Engineering, Shanghai Second Polytechnic University Department of Environmental Engineering, Shanghai Second Polytechnic University Thermochemistry Facility and NEAT ORU, University of California at Davis
  • Received: Revised: Online: Published:
PDF ( 1334 ) Cited
Export

EndNote

Ris

BibTeX

The paper reviews thermochemistry contribution to the stability of frameworks and synthetic progress in microporous and mesoporous materials. Knowledge of enthalpies, entropies and free energies of formation on the framework structure in micorporous and mesoporous materials is systematically summarized via several calorimetric measurements. It is found that a series of pure-silica, mesoporous silicas and AlPO4 polymorphs are energetically, at most, 15 kJ·mol-1 higher than quartz and berlinite, and the entropies of a series of pure silica zeolites span a very narrow range at 3.2—4.2 J·K-1·mol-1 above quartz. Therefore, the Gibbs free energy of transformation calculated for several SiO2 phases have nearly the same ΔG298tran as the values range from 0 to 12.6 J·K-1·mol-1 with respect to quartz. Thus, there is very little energetic limitation to the possibility of synthesizing various micro- and mesoporous framework structures. In addition, a new calorimetric method, in situ calorimetry, is introduced to reveal the kinetics and nucleation/crystallization in the process of the zeolite synthesis.

CLC Number: 

[ 1 ] Szostak R. Handbook of Molecular Sieves. New York : Van Nostrand Reinhold , 1992
[ 2 ] Breck D W. Zeolite Molecular Sieves. New York : John Wiley ,1974
[ 3 ] Jentys A , Catlow C R A. Catal . Lett . , 1993 , 22 : 251 —259
[ 4 ] Fritsch S , Navrotsky A. J . Am. Ceram. Soc. , 1996 , 79 :1761 —1768
[ 5 ] Kresge C T , Leonowicz M E , Roth WJ , Vartuli J C , Beck J S.Nature , 1992 , 359 : 710 —713
[ 6 ] Huo Q S , Margolese D I , Clesia U , Feng P Y, Gier T E , Sieger P , Leon R , Petroff P M, Schuth F , Stucky GD. Nature , 1994 ,368 : 317 —319
[ 7 ] Davis M E. Microporous Mesoporous Mater. , 1998 , 21 : 173 —182
[ 8 ] Burkett S L , Davis M E. J . Phys. Chem. , 1994 , 98 : 4647 —4655
[ 9 ] Ozin GA. Adv. Mater. , 1992 , 613 —617
[10] Davis M E , Lobo P F. Chem. Mater. , 1992 , 4 : 756 —763
[11] Lin I C , Navrotsky A , Ballato J , Riman R. J . Non-Crystalline Solids , 1997 , 215 : 113 —121
[12] Petrovic I , Navrotsky A. Microporous Materials , 1997 , 9 : 1 —12
[13] Shim S H , Navrotsky A , Gaffney T R , McDougall J . Am.Miner. , 1999 , 84 : 1870 —1881
[14] Yang S , Navrotsky A. Microporous Mesoporous Mater. , 2000 ,37 : 175 —186
[15] Yang S Y, Navrotsky A , Phillips B. J . Phys. Chem. B , 2000 ,104 : 6071 —6080
[16] Piccione P M, Woodfield B , Boerio2Goates J , Navrotsky A , Davis M E. J . Phys. Chem. B , 2001 , 105 : 6025 —6030
[17] Gross A F , Yang S Y, Navrotsky A , Tolbert S H. J . Phys.Chem. B , 2003 , 107 : 2709 —2718
[18] Yang S Y, Navrotsky A , Wesdowski D J , et al . Chem. Mater. ,2004 , 16 : 210 —219
[19] Yang S Y, Navrotsky A. Micro. Meso. Mater. , 2002 , 52 : 93 —103
[20] Yang S Y, Navrotsky A. Chem. Mater. , 2004 , 16 : 3682 —3687
[21] Li Q H , Navrotsky A , Rey F , Corma A. Microporous Mesoporous Mater. , 2003 , 59 : 127 —133
[22] Petrovic I , Navrotsky A , Davis M E , Zones S I. Chem. Mater. ,1993 , 5 : 1805 —1813
[23] Piccione P M, Laberty C , Yang S Y, Camblor M A , Navrotsky A , Davis M E. J . Phys. Chem. B , 2000 , 104 : 10001 —10011
[24] Maniar P D , Navrotsky A , Rabinovich E M, Ying J Y, Benier J B. J . Noncrystallogr. Solids , 1990 , 124 : 101 —111
[25] Ying J Y, Benziger J B , Navrotsky A. J . Am. Ceram. Soc. ,1993 , 76 : 2571 —2583
[26] Moloy E C , Davila L P , Shackelford J F , Navrotsky A.Microporous Mesoporous Mater. , 2002 , 54 : 1 —13
[27] Li Q H , Yang S Y, Navrotsky A. Microporous Mesoporous Mater. , 2003 , 65 : 137 —143
[28] Hu Y T , Navrotsky A , Chen C Y. Chem. Mater. , 1995 , 7 :1816 —1823
[29] Navrotsky A , Petrovic I , Hu Y T , Chen C , Davis M E.Microporous Mater. , 1995 , 4 : 95 —98
[30] Boerio-Goates J , Stevens R , Hom B K, Woodfield B F , Piccione P M, Davis M E , Navrotsky A. J . Chem. Thermo. , 2002 , 34(2) : 205 —227
[31] La Iglesia A , Aznar A J . Zeolites , 1986 , 6 : 26 —32
[32] Johnson G K, Tasker I R , Howell D A , Smith J V. J . Chem.Thermodyn. , 1987 , 19 : 617 —623
[33] Patarin J , Soulard M, Kessler H , Guth J L , Dito M.Thermochim. Acta , 1989 , 146 : 21 —27

[1] Fang Sheng. Viscosity Model for Mixtures Based on Eyring’s Absolute Reaction Theory [J]. Progress in Chemistry, 2010, 22(0203): 309-314.
[2] Zhicheng Tan1**|Youying Di2. Review of Modern Low-Temperature Adiabatic Calorimetry [J]. Progress in Chemistry, 2006, 18(09): 1234-1252.
[3] Zhiwu ,Wei**,Wenying Gao. Progress in Biothermochemistry [J]. Progress in Chemistry, 2006, 18(0708): 1049-1055.
[4] He Zhanbo. New Advances in Combustion Research in Aqueous Fuel [J]. Progress in Chemistry, 1997, 9(02): 192-.