中文
Announcement
More
Progress in Chemistry 2006, Vol. 18 Issue (05): 622-626 Previous Articles   Next Articles

• Review •

Biological Microelement Iron and Protein Tyrosine Nitration

Hailing Li Huibi Xu Zhonghong Gao   

  1. Department of Chemistry, Huazhong University of Science & Technology Department of Chemistry, Huazhong University of Science & Technology Department of Chemistry, Huazhong University of Science & Technology
  • Received: Revised: Online: Published:
  • Contact: Zhonghong Gao
PDF ( 1444 ) Cited
Export

EndNote

Ris

BibTeX

Protein tyrosine nitration is a biomarker of NO-dependent oxidative stress. Protein nitration will induce the changes of protein catalytic activities, cell signaling and cell skeletal structure, and lead to relevant pathological events. In this paper, the roles of iron in different pathways of protein nitration are introduced, and the results indicated that microelement iron in vivo plays an important role in protein nitration.

CLC Number: 

[ 1 ] Galleano M, Simontacchi M, Puntarulo S. Mol . Aspects Med. ,2004 , 25 (1P2) : 141 —154
[ 2 ] 钱忠明( Qian Z M) . 铁代谢———基础与临床( Iron Metabolism: Fundamental and Clinical Aspect) . 北京: 科学出版社(Beijing : Science Press) , 2000. 185
[ 3 ] Jung M, Drapier J C , Nussler A K, et al . J . Hepatol . , 2000 , 33(3) : 387 —394
[ 4 ] Cederbaum A I. Alcohol , 2003 , 30 (2) : 115 —120
[ 5 ] Ischiropoulos H. Biochem. Biophys. Res. Commun. , 2003 , 305(3) : 776 —783
[ 6 ] Herold S. Free Radic. Biol . Med. , 2004 , 36 (5) : 565 —579
[ 7 ] Fries D M, Paxinou E , Ischiropoulos H , et al . J . Biol . Chem. ,2003 , 278 (25) : 22901 —22907
[ 8 ] Gorg B , Wettstein M, Haussinger D , et al . Hepatology , 2005 , 41(5) : 1065 —1073
[ 9 ] Fukuyama N , Takebayashi Y, Nakazawa H , et al . Free Radic.Biol . Med. , 1997 , 22 (5) : 771 —774
[10] Ischiropoulos H , Beckman J S. J . Clin. Invest . , 2003 , 111(2) : 163 —169
[11] Turko I V , Murad F. Pharmacol . Rev. , 2002 , 54 (4) : 619 —634
[12] Schopfer F , Baker P R , Freeman B A. Trends Biochem. Sci . ,2003 , 28 (12) : 646 —654
[13] Lokuta AJ , Maertz N A , Haworth R A , et al . Circulation , 2005 ,111 (8) : 988 —995
[14] Hodara R , Norris E H , Ischiropoulos H , et al . J . Biol . Chem. ,2004 , 279 (46) : 47746 —47753
[15] Bebok Z , Varga K, Matalon S , et al . J . Biol . Chem. , 2002 ,277 : 43041 —43049
[16] Radi R. Proc. Natl . Acad. Sci . USA , 2004 , 101 (12) : 4003 —4008
[17] Niketic V , Stojanovic S , Nikolic A , et al . Free Radic. Biol .Med. , 1999 , 27 (9/10) : 992 —996
[18] Nagababu E , Rifkind J M. Biochemistry , 2000 , 39 ( 40 ) :12503 —12511
[19] Stojanovic S , Stanic D , Niketic V. Nitric Oxide , 2004 , 11 (3) :256 —262
[20] Pfeiffer S , Lass A , Mayer B , et al . FASEB J . , 2001 , 15 (13) :2355 —2364
[21] Goldstein S , Merenyi G, Samuni A. J . Am. Chem. Soc. , 2004 ,126 (48) : 15694 —15701
[22] Mehl M, Daiber A , Ullrich V , et al . Nitric Oxide , 1999 , 3 (2) :142 —152
[23] Schmidt P , Youhnovski N , Ullrich V , et al . J . Biol . Chem. ,2003 , 278 (15) : 12813 —12819
[24] Daiber A , Bachschmid M, Beckman J S , et al . Biochem.Biophys. Res. Commun. , 2004 , 317 (3) : 873 —881
[25] Kanski J , Hong S J , Schoneich C. J . Biol . Chem. , 2005 , 280(25) : 24261 —24266
[26] Eiserich J P , Cross C E , Jones A D , et al . J . Biol . Chem. ,1996 , 271 (32) : 19199 —19208
[27] Sampson J B , Ye Y Z , Rosen H , et al . Arch. Biochem.Biophys. , 1998 , 356 (2) : 207 —213
[28] Thomas D D , Espey M G, Wink D A , et al . Proc. Natl . Acad.Sci . USA , 2002 , 99 (20) : 12691 —12696
[29] Bian K, Gao Z H , Murad F , et al . Proc. Natl . Acad. Sci .USA , 2003 , 100 (10) : 5712 —5717
[30] Gunther M R , Sampath V , Caughey W S. Free Radic. Biol .Med. , 1999 , 26 (11/12) : 1388 —1395
[31] Zhang H , Bhargava K, Kalyanaraman B , et al . J . Biol . Chem. ,2003 , 278 (11) : 8969 —8978
[32] Gunther M R , His L C , Curtis J F , et al . J . Biol . Chem. ,1997 , 272 (27) : 17086 —17090
[33] Oury T D , Tatro L , Piantadosi C A , et al . Free Radic. Res. ,1995 , 23 (6) : 537 —547
[34] Haqqani A S , Kelly J F , Birnboim H C. J . Biol . Chem. , 2002 ,277 (5) : 3614 —3621
[35] Good P F , Olanow C W, Perl D P. Brain Res. , 1992 , 593 (2) :343 —346
[36] Smith M A , Harris P L R , Sayre L M, et al . Proc. Natl . Acad.Sci . USA , 1997 , 94 (18) : 9866 —9868
[37] Hirsch E C , Brandel J P , Agid Y, et al . J . Neurochem. , 1991 ,56 (2) : 446 —451
[38] Good P F , Hsu A , Olanow C W, et al . J . Neuropathol . Exp.Neurol . , 1998 , 57 (4) : 338 —342
[39] Castegna A , Thongboonkerd V , Butterfield D A , et al . J .Neurochem. , 2003 , 85 (6) : 1394 —1401
[40] Casoni F , Basso M, Bonetto V , et al . J . Biol . Chem. , 2005 ,280 (16) : 16295 —16304
[41] Khan M F , Wu X, Kaphalia B S , et al . Toxicology , 2003 , 194(1/2) : 95 —102

[1] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[2] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[3] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[4] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[5] Jiali Zhong, Weigang Wang, Chao Peng, Nan Ma, Zhijun Wu, Maofa Ge. Atmospheric Aerosol Hygroscopicity and Their Influence on Environment [J]. Progress in Chemistry, 2022, 34(4): 801-814.
[6] Shuangyu Zhang, Yunxuan Hu, Cheng Li, Xinhua Xu. Effect of Microbial Iron Redox on Aqueous Arsenic and Antimony Removal [J]. Progress in Chemistry, 2022, 34(4): 870-883.
[7] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[8] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[9] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[10] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[11] Haodong Ji, Juanjuan Qi, Maosheng Zheng, Chenyuan Dang, Long Chen, Taobo Huang, Wen Liu. Application of Nanotechnology for Virus Inactivation in Water:Implications for Transmission-Blocking of the Novel Coronavirus SARS-CoV-2 [J]. Progress in Chemistry, 2022, 34(1): 207-226.
[12] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[13] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[14] Yuyang Lei, Fangfang Li, Jie Ouyang, Minjie Li, Lianghong Guo. Environmental Distribution Characteristics and Source Analysis of Antibiotics in Zhejiang Area [J]. Progress in Chemistry, 2021, 33(8): 1414-1425.
[15] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.