中文
Announcement
More
Progress in Chemistry 2005, Vol. 17 Issue (06): 1048-1053 Previous Articles   Next Articles

• Review •

The Development of the Carbenium Transition State Analogs

Liao Guihong;He Hongwu**   

  1. Key Laboratory of Pesticide &Chemical Biology , Ministry of Education,College of Chemistry,Central China Normal University,Wuhan 430079,China
  • Received: Revised: Online: Published:
  • Contact: He Hongwu
PDF ( 1419 ) Cited
Export

EndNote

Ris

BibTeX

An important feature in the enzyme catalyzed reaction is that an enzyme recognizes and binds more tightly to the transition state than to the ground state of the substrate product interconversion. The transition state analog must be a potent inhibitor of the enzyme.The recent development of the carbenium transition state analogs as the enzymatic inhibitors which are designed by the transition state theory of enzyme catalyzed reactions is reviewed. Four types of enzymatic inhibitors including the transition state analogs of isoprenoid pyrophosphate,sialyltransferase,KDO8P and UGT are introduced.

CLC Number: 

[ 1 ] 古练权(Gu L Q) , 马林(Ma L) 1 生物有机化学(Bioorganic Chemistry) . 北京: 高等教育出版社(Beijing : Higher Education Press) , 1998. 123
[ 2 ] 马军安(Ma J A) , 黄润秋(Huang R Q) , 杨华铮(Yang H Z) 1合成化学( Chinese Journal of Synthetic Chemistry) , 2000 , 8(6) : 479
[ 3 ] 仇缀百(Qiu Z B) 1 药物设计学(Drug Design) . 北京: 高等教育出版社(Beijing : Higher Education Press) , 1999. 150
[ 4 ] Wouters J , Oudjama Y, Stalon V , Droogmans L , Poulter C D.Proteins: Structure , Function , and Bioinformatics , 2004 , 54 :216 —221
[ 5 ] Wang C W, Liao J C. Biotechnology and Bioengineering , 1999 ,62 : 235 —236
[ 6 ] Rodan G A. Annu. Rev. Pharmacol . , 1998 , 38 : 375 —388
[ 7 ] Van Beek E , Pieterman E , Cohen L , et al . Biochem. Biophys.Res. Commun. , 1999 , 255 : 491 —494
[ 8 ] Cromatie T H , Fisher K J , Grossman J N. Pest . Biochem.Physiol . , 1999 , 63 : 114 —126
[ 9 ] Oberhauser V , Gaudin J , Fonne2Pfister R , et al . Pest . Biochem.Physiol . , 1998 , 60 : 111 —117
[10] Martin M B , Arnold W, Heath H T , et al . Biochemical and Biophysical Research Communications , 1999 , 263 : 754 —758
[11] 徐广宇(Xu G Y) , 谢毓元(Xie Y Y) . 中国药物化学杂志(Chinese Journal of Medicinal Chemistry) , 2004 , 14 (3) : 182 —185
[12] Van Beek E , Lowik C , Papapoulos S. J . Bone Miner. Res. ,1999 , 14 : 722 —729
[13] Benedict J J , Perkins C M. EP 85 309 140. 3 , 1995
[14] Rogers M J , Ji X, Russell G G, et al . J . Biochem. , 1994 , 303 :303 —311
[15] Bruchhaus I , Jacobs T , Denart M, Tannich E. J . Biochem. ,1996 , 316 : 57 —63
[16] Varki A. Glycobiology , 1992 , 2 : 25 —40
[17] Powell L D , Varki A. J . Bio. Chem. , 1995 , 270(24) : 14243 —14246
[18] Datta A K, Sinha A , Paulson J C. J . Bio. Chem. , 1998 , 273(16) : 9608 —9614
[19] Datta A K, Paulson J C. J . Bio. Chem. , 1995 , 270 ( 4 ) :1497 —1500
[20] Drickamer K. Glycobiology , 1993 , 3 : 2 —3
[21] Chen C , Colley K J . Glycobiology , 2000 , 10(5) : 531 —538
[22] Legaigneur P , Breton C , Battari A E , Guillemot J C , et al . J .Bio. Chem. , 2001 , 276 (24) : 21608 —21617
[23] Itzstein M, Wu W Y, Kok G B , et al . Nature , 1993 , 363 :418 —423
[24] Kim C U , Lew W, Williams M A , et al . J . Am. Chem. Soc. ,1997 , 119 : 681 —690
[25] Amann F , Schaub C , Muller B , Schmidt R R. Chem. Eur. J . ,1998 , 4(6) : 1106 —1115
[26] Schaub C , Muller B , Schmidt R R. Glycoconj . J . , 1998 , 15 :345 —354
[27] Muller B , Schaub C , Schmidt R R. Angew. Chem. Int . Ed. ,1998 , 37(20) : 2893 —2897
[28] Schworer R , Schmidt R R. J . Am. Chem. Soc. , 2002 , 124(8) :1632 —1637
[29] Schroder P N , Giannis A. Angew Chem. Int . Ed. , 1999 , 38(10) : 1379 —1380
[30] Sun H B , Yang J S , Amaral K E , Horenstein B A. Tetrahedron Lett . , 2001 , 42 : 2451 —2453
[31] Anderson L , Unger F M. ACS Symp. Ser. , 1983 , 231 : 141
[32] Unger F M. Adv. Carbohydr. Chem. Biochem. , 1981 , 83 : 323
[33] Baasov T , Sheefer-Dee-Noor S , Kohen A , Belakhov V. Eur. J .Biochem. , 1993 , 217 : 991 —999
[34] Kohen A , Belakhov V , Baasov T. Tetrahedron Letters , 1994 , 35 :3179
[35] Baasov T , Kohen A. J . Am. Chem. Soc. , 1995 , 117 : 6165 —6174
[36] Liu H T , Li W X, Kim C U. Bioorganic &Medicinal Chemistry Letters , 1997 , 7 : 1419 —1420
[37] Mulder G J . Ann. Rev. Pharmacol . Toxicol . , 1992 , 32 : 25 —49
[38] Timmers C M, Dekker M, Buijisman R C , et al . Bioorganic &Medicinal Chemistry Letters , 1997 , 7 : 1501 —1506

[1] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[2] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[3] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[4] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[5] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[6] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[7] Xinyu Wang, Fuping Zhao, Ru Zhang, Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents [J]. Progress in Chemistry, 2021, 33(12): 2259-2269.
[8] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[9] Hua Guo, Lei Zhang, Xu Dong, Gangyi Shen, Junfa Yin. Immobilized Multi-Enzyme Cascade Reactor [J]. Progress in Chemistry, 2020, 32(4): 392-405.
[10] Danbi Tian, Shengnan Wu, Hao Zhang, Ling Jiang, Fengwei Huo. Application of Inner Filter Effect Technology in Biological Detection and Disease Markers [J]. Progress in Chemistry, 2019, 31(2/3): 413-421.
[11] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.
[12] Chenxi Liang, Lixin Cao*, Yuejuan Zhang, Peisheng Yan. Electrochemical Biosensors for Marine Toxins Analysis [J]. Progress in Chemistry, 2018, 30(7): 1028-1034.
[13] Yingwu Lin. Rational Design of Artificial Metalloenzymes: Case Studies in Myoglobin [J]. Progress in Chemistry, 2018, 30(10): 1464-1474.
[14] Xiang Li, Jiayuan Shi, Shuang Qiu, Mingfang Wang, Changlin Liu*. SOD1 Inhibition Regulates the ROS Signaling Transduction [J]. Progress in Chemistry, 2018, 30(10): 1475-1486.
[15] Zhao Yanan, Wang Mengfan, Qi Wei, Su Rongxin, He Zhimin. Supramolecular Artificial Enzyme Based on Assembling Peptide Gel [J]. Progress in Chemistry, 2016, 28(11): 1664-1671.