中文
Announcement
More
Progress in Chemistry 2005, Vol. 17 Issue (06): 1012-1018 Previous Articles   Next Articles

• Review •

Progress in SnO2TiO2 Composite Semiconductor Nanofilm

Shang Jing**;Xie Shaodong;Liu Jianguo   

  1. Department of Environmental Sciences,College of Environmental Sciences,Peking University,Beijing 100871,China
  • Received: Revised: Online: Published:
  • Contact: Shang Jing
PDF ( 1625 ) Cited
Export

EndNote

Ris

BibTeX

The research history and current focus of SnO2TiO2 composite semiconductor nanofilms are summarized in this paper.Three types of the nanofilms,mixed,core-shell and layer-stacked,are thoroughly elucidated and compared in terms of structure and property.In particular,the optoelectronic and photocatalytic properties of SnO2 /TiO2 bilayer nanofilm are emphasized.The dependence of photocatalytic activity of this nanofilmon the TiO2 or SnO2 layer thickness is discussed.The increased photocatalytic activity of SnO2 /TiO2 composite nanofilms can be attributed to the improvement of the efficiency of electron transferring from TiO2 to SnO2.The development potential and limitation of the SnO2 /TiO2 composite nanofilms are briefly analyzed.

CLC Number: 

[ 1 ] Hoffmann M R , Martin S T , Choi W Y, et al . Chem. Rev. ,1995 , 95(1) : 69 —96
[ 2 ] Linsebigler A L , Lu G Q , Yates J T Jr. Chem. Rev. , 1995 , 95(3) : 735 —758
[ 3 ] Sopyan I , Watanabe M, Murasawa S. Chem. Lett . , 1996 , 1 :69 —70
[ 4 ] Torimoto T , Ito S , Kuwabata S , et al . Environ. Sci . Technol . ,1996 , 30(4) : 1275 —1281
[ 5 ] 尚静(Shang J) , 徐自力(Xu Z L) , 杜尧国(Du Y G) . 环境污染治理技术与设备( Techniques and Equipment for Environmental Pollution Control) , 2000 , 1(3) : 67 —76
[ 6 ] Asahi R , Morikawa T , Ohwaki T , et al . Science , 2001 , 293(5528) : 269 —271
[ 7 ] Khan S U M, Al-Shahry M, Ingler W B Jr. Science , 2002 , 297(5590) : 2243 —2245
[ 8 ] Pirutko L V , Chernyavsky V S , Uriarte A K, et al . Appl . Catal .A: Gen. , 2002 , 227 (1/2) : 143 —157
[ 9 ] Hiskia A , Mylonas A , Papaconstantinou E. Chem. Soc. Rev. ,2001 , 30(1) : 62 —69
[10] Xu X H , Wang M, Hou Y, et al . J . Mater. Sci . Lett . , 2002 ,21(21) : 1655 —1656
[11] Zou Z G, Ye J H , Sayama K, et al . Nature , 2001 , 414 (6864) :625 —627
[12] Vinodgopal K, Kamat P V. Environ. Sci . Technol . , 1995 , 29(3) : 841 —845
[13] Vinodgopal K, Bedja I , Kamat P V. Chem. Mater. , 1996 , 8(8) : 2180 —2187
[14] Bedja I , Kamat P V. J . Phys. Chem. , 1995 , 99 (22) : 9182 —9188
[15] Lin J , Yu J C , Lo D , et al . J . Catal . , 1999 , 183 (2) : 368 —372
[16] Tennakone K, Bandara J . Appl . Catal . A: Gen. , 2001 , 208(1/2) : 335 —341
[17] Shi L Y, Li C Z , Gu H C , et al . Mater. Chem. Phys. , 2000 ,62(1) : 62 —67
[18] Song K Y, Park M K, Kwon Y T , et al . Chem. Mater. , 2001 ,13 (7) : 2349 —2355
[19] Ohno T , Tanigawa F , Fujihara K, et al . J . Photochem.Photobiol . A: Chem. , 1998 , 118 (1) : 41 —44
[20] Do Y R , Lee W, Dwight K. J . Solid State Chem. , 1994 , 108(1) : 198 —201
[21] Kwon Y T , Song K Y, Lee W I. J . Catal . , 2000 , 191 (1) :192 —199
[22] Li X Z , Li F B , Yang C L , et al . J . Photochem. Photobiol . A:Chem. , 2001 , 141 (2/3) : 209 —217
[23] Pal B , Sharon M, Nogami G. Mater. Chem. Phys. , 1999 , 59(3) : 254 —261
[24] Pal B , Hata T , Goto K, et al . J . Mol . Catal . A: Chem. , 2001 ,169(1/2) : 147 —155
[25] Wang C , Zhao J C , Wang X M, et al . Appl . Catal . B :Environ. , 2002 , 39(3) : 269 —279
[26] Kamat P V , Flumiani M, Dawson A. Colloid Surface A , 2002 ,202(2/3) : 269 —279
[27] Bedja I , Hotchandani S , Kamat P V , et al . Berichte der Bunsen Gesellschaft-Phys. Chem. Chem. Phys. , 1997 , 101 ( 11 ) :1651 —1653
[28] Nasr C , Hotchandani S , Kim W Y, et al . J . Phys. Chem. B ,1997 , 101 (38) : 7480 —7487
[29] Hotchandani S , Kamat P V. J . Phys. Chem. B , 1992 , 96 :6834 —6839
[30] Nasr C , Kamat P V , Hotchandani S. J . Phys. Chem. B , 1998 ,102(49) : 10047 —10056
[31] Hattori A , Tokihisa Y, Tada H , et al . J . Electrochem. Soc. ,2000 , 147 (6) : 2279 —2283
[32] Tada H , Hottri A , Tokihisa Y, et al . J . Phys. Chem. , 2000 ,104(19) : 4585 —4587
[33] Tada H , Tanaka M. Langmuir , 1997 , 13(2) : 360 —364
[34] Kawahara T , Konishi Y, Tada H , et al . Langmuir , 2001 , 17(23) : 7442 —7445
[35] Levy B , Liu W, Gilbert S. J . Phys. Chem. B , 1997 , 101(10) :1810 —1816
[36] Taia W P , Inoueb K, Oha J H. Solar Energy Materials & Solar Cells , 2002 , 71 : 553 —557
[37] Taia W P. Mater. Lett . , 2001 , 51 : 451 —454
[38] Shang J , Yao W Q , Zhu Y F , et al . Appl . Catal . A: Gen. ,2004 , 257 (1) : 25 —32
[39] Tachibana Y, Hara K, Sayama K, et al . Chem. Mater. , 2002 ,14(6) : 2527 —2535
[40] Cao Y A , Zhang X T , Yang W S , et al . Chem. Mater. , 2000 ,12(11) : 3445 —3448

[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[6] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[7] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[8] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[9] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[10] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[11] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[12] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[13] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[14] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[15] Xuechen Liu, Juanjuan Xing, Haipeng Wang, Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA [J]. Progress in Chemistry, 2020, 32(9): 1294-1306.