中文
Announcement
More
Progress in Chemistry 2005, Vol. 17 Issue (05): 924-930 Previous Articles   Next Articles

• Review •

Fundamentals of Biocatalysis in Organic Solvents

Yang Zhen*   

  1. College of Life Science, Shenzhen University,Shenzhen 518060,China
  • Received: Revised: Online: Published:
  • Contact: Yang Zhen
PDF ( 3145 ) Cited
Export

EndNote

Ris

BibTeX

Nonaqueous enzymology has attracted more and more interests from researchers and industry because of the unique properties provided by enzymes in nonaqueous environments. Supported by an exponential growth of the literature, this rapidly developing research area has made tremendous progress in recent years in gaining an improved fundamental understanding of enzyme function and activation in organic media. In such a non-conventional milieu, the enzyme maintains its structural and mechanistic integrity. The role of water and solvents on enzyme function has been discussed in detail, such as the effects of water on enzyme activity and protein mobility, the effects of solvent on the water associated with the enzyme, on enzyme s active site and protein dynamics and conformation, on substrates and products, and on the enzymatic activation energy. A series of methods and techniques for activating enzymes in organic solvents have been summarized, such as to overcome the limitations in diffusion and accessibility, to optimize the pH situation, to minimize the effect of solvents on activation energy, to enhance the conformational mobility of the enzyme, and to prevent enzyme denaturation during dehydration by lyophilizing enzymes in the presence of a selection of organic or inorganic excipients (e.g. nonbuffer salts or macrocycles) . These techniques are quite simple and scalable, and can promote a wide range of enzyme activation (up to 105-fold) through different mechanisms. All these will undoubtedly help us to effectively design high-activity enzyme preparations suitable for use in organic solvents and to broaden the applications of nonaqueous enzymology to a greater extent.

CLC Number: 

[ 1 ] Klibanov A M1 Nature , 2001 , 409 : 241 —246
[ 2 ] Lee M Y, Dordick J S. Curr. Opin. Biotechnol . , 2002 , 13 :376 —384
[ 3 ] Khmelnitsky Y L , Rich J O. Curr. Opin. Chem. Biol . , 1999 ,3 : 47 —53
[ 4 ] Yang Z , Russell A J . Enzymatic Reactions in Organic Media (eds. Koskinen A M P , Klibanov A M) . Blackie Academic & Professional , 1996. 43 —69
[ 5 ] Fitzpatrick P A , Steinmetz A C U , Ringe D , et al . Proc. Natl .Acad. Sci . USA , 1993 , 90 : 8653 —8657
[ 6 ] Schmitke J L , Stern L J , Klibanov A M. Proc. Natl . Acad. Sci .USA , 1997 , 94 : 4250 —4255
[ 7 ] Yennawar H P , Yennawar N H , Farber G K. Biochemistry ,1994 , 33 : 7326 —7336
[ 8 ] Allen K N , Bellamacina C R , Ding X, et al . J . Phys. Chem. ,1996 , 100 : 2605 —2611
[ 9 ] Wang Z , Zhu G, Huang Q , et al . Biochim. Biophys. Acta ,1998 , 1384 : 335 —344
[10] Griebenow K, Klibanov A M. Biotechnol . Bioeng. , 1997 , 53 :351 —362
[11] Fersht A. Enzyme Structure and Mechanism, 2nd ed. W. H.Freeman and Company , 1985. 27 —28
[12] Kim J , Clark D S , Dordick J S. Biotechnol . Bioeng. , 2000 , 67 :112 —116
[13] Schmitke J L , Stern L J , Klibanov A M. Proc. Natl . Acad. Sci .USA , 1998 , 95 : 12918 —12923
[14] Affleck R , Xu Z F , Suzawa V , et al . Proc. Natl . Acad. Sci .USA , 1992 , 89 : 1100 —1104
[15] Xu Z F , Affleck R , Wangikar P , et al . Biotechnol . Bioeng. ,1994 , 43 : 515 —520
[16] Zaks A , Klibanov A M. J . Biol . Chem. , 1988 , 263 : 8017 —8021
[17] Bone S , Pethig R. J . Mol . Biol . , 1985 , 181 : 323 —326
[18] Partridge J , Dennison P R , Moore M D , et al . Biochim.Biophys. Acta , 1998 , 1386 : 79 —89
[19] Volkin D B , Staubli A , Langer R , et al . Biotechnol . Bioeng. ,1991 , 37 : 843 —853
[20] Liu W R , Langer R L , Klibanov A M. Biotechnol . Bioeng. ,1991 , 37 : 177 —184
[21] Halling P J . Trends Biotechnol . , 1989 , 7 : 50 —51
[22] Halling P J . Enzyme Microb. Technol . , 1994 , 16 : 178 —206
[23] Valivety R H , Halling P J , Macrae A R. Biochim. Biophys.Acta , 1992 , 1118 : 218 —222
[24] Bell G, Janssen A E M, Halling P J . Enzyme Microb. Technol . ,1997 , 20 : 471 —477
[25] Yang Z , Robb D A. Biotechnol . Bioeng. , 1994 , 43 : 365 —370
[26] Fontes N , Harper N , Halling P J , et al . Biotechnol . Bioeng. ,2004 , 82 : 802 —808
[27] Yang Z , Robb D A. Biochem. Soc. Trans. , 1991 , 20 : 13S
[28] Valivety R H , Halling P J , Macrae A R. FEBS Lett . , 1992 ,301 : 258 —260
[29] Valivety R H , Halling P J , Peilow A D , et al . Biochim.Biophys. Acta , 1992 , 1122 : 143 —146
[30] Secundo F , Carrea G. Chem. Eur. J . , 2003 , 9 : 3194 —3199
[31] Yang Z , Zacherl D , Russell A J . J . Am. Chem. Soc. , 1993 ,115 : 12251 —12257
[32] Zaks A , Klibanov A M. J . Biol . Chem. , 1988 , 263 : 3194 —3201
[33] Gorman L A S , Dordick J S. Biotechnol . Bioeng. , 1992 , 39 :392 —397
[34] Khmelnitsky Y L , Belova A B , Levashov A V , et al . FEBS Lett . , 1991 , 284 : 267 —269
[35] Knubovets T , Osterhout J J , Klibanov A M. Biotechnol . Bioeng. ,1999 , 63 : 242 —248
[36] Babu K R , Moradian A , Doublas D J . J . Am. Soc. Mass Spectrom. , 2001 , 12 : 317 —328
[37] Ryu K, Dordick J S. Biochemistry , 1992 , 31 : 2588 —2598
[38] Guo Y, Clark D S. Biochim. Biophys. Acta , 2001 , 1546 : 406 —411
[39] Klibanov A M. Trends Biotechnol . , 1997 , 15 : 97 —101
[40] Burke P A , Griffin R G, Klibanov A M. Biotechnol . Bioeng. ,1993 , 42 : 87 —94
[41] Hartsough D S , Merz K M. J . Am. Chem. Soc. , 1992 , 114 :10113 —10116
[42] Burke P A , Griffin R G, Klibanov A M. J . Biol . Chem. , 1992 ,267 : 20057 —20064
[43] Kascher V , Michaelis G, Galunsky B. Biotechnol . Lett . , 1991 ,13 : 75 —80
[44] Yang Z , Robb D A. Enzyme Microb. Technol . , 1993 , 15 :1030 —1036
[45] Wangikar P P , Graykar T P , Estell D A , et al . J . Am. Chem.Soc. , 1993 , 115 : 12231 —12237
[46] Zacharis E , Halling P J , Rees D G. Proc. Natl . Acad. Sci .USA , 1999 , 96 : 1201 —1205
[47] Blackwood A D , Curran L J , Moore B D , et al . Biochim.Biophys. Acta , 1994 , 1206 : 161 —165
[48] Griebenow K, Klibanov A M. Proc. Natl . Acad. Sci . USA ,1995 , 92 : 10969 —10976
[49] Dai L , Klibanov A M. Proc. Natl . Acad. Sci . USA , 1999 , 96 :9475 —9478
[50] Ru M T , Dordick J S , Reimer J A , et al . Biotechnol . Bioeng. ,1999 , 63 : 233 —241
[51] Van Unen D J , Engbersen J F J , Reinhoudt D N. Biotechnol .Bioeng. , 1998 , 59 : 553 —556
[52] Montanez-Clemente I , Alvira E , Macias M, et al . Biotechnol .Bioeng. , 2002 , 78 : 53 —59
[53] Noda S , Kamiya N , Goto M, et al . Biotechnol . Lett . , 1997 , 19 :307 —309
[54] 高修功(Gao X G) , 曹淑桂(Cao S G) , 章克昌(Zhang K C) .生物化学与生物物理学报(Acta Biochimica et Biophysica Sinica) , 1997 , 29 (4) : 337 —342
[55] 蒋太高(Jiang T G) , 吉鑫松(Ji X S) , 黄鹤(Huang H) , 袁中一(Yuan Z Y) . 生物化学与生物物理学报(Acta Biochimica et Biophysica Sinica) , 1998 , 30 (6) : 644 —647
[56] 沈鸿雁(Shen H Y) , 田桂玲(Tian G L) , 闫爱新( Yan A X)等. 化学学报(Acta Chimica Sinica) , 2003 , 61 (7) : 1144 —1148
[57] 王智(Wang Z) , 苟小军(Gou X J ) , 于大海( Yu D H) 等. 吉林大学学报( 理学版) (Journal of Jilin University ( Science Ed. ) ) , 2004 , 42 (1) : 126 —129

[1] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[2] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[3] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[4] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[5] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[6] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[7] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[8] Danbi Tian, Shengnan Wu, Hao Zhang, Ling Jiang, Fengwei Huo. Application of Inner Filter Effect Technology in Biological Detection and Disease Markers [J]. Progress in Chemistry, 2019, 31(2/3): 413-421.
[9] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[10] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[11] Tian Danbi, Zhang Wei, Tang Yan, Jiang Ling, Liu Jia, Hu Yi. Bioconjugate Probe for Enzyme Activity Based on the Gold Nanoparticles [J]. Progress in Chemistry, 2015, 27(2/3): 267-274.
[12] Niu Fanfan, Nie Changjun, Chen Yong, Sun Xiaoling. Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins [J]. Progress in Chemistry, 2014, 26(12): 1942-1961.
[13] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[14] Xie Yingjuan, Wu Zhijiao, Zhang Xiao, Ma Peijun, Piao Lingyu. Synthesis and Photocatalytic Mechanisms of the Mixed-Phase TiO2 Photocatalysts [J]. Progress in Chemistry, 2014, 26(07): 1120-1131.
[15] Zhang Qian, Zhou Ying, Zhang Zhao, He Yun, Chen Yongdong, Lin Yuanhua. Plasmonic Photocatalyst [J]. Progress in Chemistry, 2013, 25(12): 2020-2027.