中文
Announcement
More
Progress in Chemistry 2005, Vol. 17 Issue (04): 660-665 Previous Articles   Next Articles

• Review •

Studies on the Chemical Principle and Capacity of Carbon Nanotubes as Energy Storage Materials

Zhou Li1**;Sun Yan1;Su Wei1;Zhou Yaping2   

  1. 1.High Pressure Adsorption Laboratory, School of Chemical Engineering and Technology, Tianjin University,Tianjin 300072,China;

    2.Department of Chemistry, School of Science, Tianjin University,Tianjin 300072,China

  • Received: Revised: Online: Published:
  • Contact: Zhou Li
PDF ( 1904 ) Cited
Export

EndNote

Ris

BibTeX

The chemical principle of hydrogen uptake by carbon nanotubes was proven to be the physisorption of supercritical gases. This conclusion was reached based on the value of the adsorption heat evaluated from a set of adsorption isotherms for a wide range of temperature and pressure as well as the fitness of the model for supercritical adsorption with the experimental isotherms. The specific surface area of the nanotubes and the temperature of storage control the capacity. The adsorption of methane on dry carbon nanotubes behaves the same way as the adsorption of hydrogen . However, the storage of methane in wet carbon nanotubes is based on the formation of methane hydrate and the size of pore volume controls the storage capacity. The storage capacity in wet multiwalled carbon nanotubes is 5.1 times higher than in dry nanotubes, and the single wall carbon nanotubes might be the best carrier of methane.

CLC Number: 

[ 1 ] Züttel A. Proceedings of the Hypothesis Ⅴ. Porto Conte , Italy ,2003
[ 2 ] Dillion A C , Jones K M, Bekkedahl T A , et al . Nature , 1997 ,386 : 377 —379
[ 3 ] Hirscher M, Becher M, Haluska M, et al . Applied Physics A ,2001 , 72 (2) : 129 —132
[ 4 ] Chambers A , Park C , Terry R , et al . J . Phy. Chem. B , 1998 ,102 (22) : 4254 —4256
[ 5 ] Ahn C C , Ye Y, Ratnakumar B V C , et al . Applied Physics Letters , 1998 , 73 (23) : 3378 —3380
[ 6 ] Liu C , Fan Y Y, Liu M, et al . Science , 1999 , 286 : 1127 —1129
[ 7 ] Fan Y Y, Liao B , Liu M, et al . Carbon , 1999 , 37 : 1649 —1652
[ 8 ] 范月英(Fan Y Y) , 刘敏(Liu M) , 成会明(Cheng H M) . 第四届全国新型炭材料学术研讨会议论文集( Proceedings of 4th National Symposium on Novel Carbon Materials ) . 1999 ,582 —587
[ 9 ] 毛宗强(Mao Z Q) , 徐才录(Xu C L) , 阎军( Yan J ) 等. 新型碳材料(Novel Carbon Materials) , 2000 , 15 (1) : 64 —67
[10] Chen P , Wu X, Lin J , et al . Science , 1999 , 285 : 91 —93
[11] Ye Y, Ahn C C , Witham C , et al . Appl . Phys. Letters , 1999 ,74 : 2307 —2309
[12] Wu X B , Chen P , Lin J , et al . Int . J . Hydrogen Energy , 2000 ,25 : 261 —265
[13] Cheng H M, Liu C , Fan Y Y, et al . Z. Mrtallkd , 2000 , 91(4) : 306 —310
[14] Li X S , Zhu H W, Ci L J , et al . Carbon , 2001 , 39 : 2077 —2088
[15] Li X S , Zhu H W, Mao Z Q , et al . Chinese Science Bulletin ,2001 , 46 (16) : 1358 —1360
[16] Poirier E , Chahine R , Bose T K. Int . J . Hydrogen Energy ,2001 , 26 : 831 —835
[17] Zhu H W, Chen A , Mao Z Q , et al . J . Mater. Sci . Lett . ,2002 , 19 : 1237 —1239
[18] Huang W Z , Zhang X B , Tu J P , et al . Mater. Chem. &Phys. ,2002 , 78 : 144 —148
[19] Züttel A , Sudan P , Mauron P , et al . Int . J . Hydrogen Energy ,2002 , 27 : 203 —212
[20] Bhabendra K, Pradhan G U , Sumanasrkera K W A , et al .Physica B , 2002 , 323 : 115 —121
[21] Wang Q K, Zhu C C , Liu W H , et al . Int . J . Hydrogen Energy ,2002 , 27 : 497 —500
[22] Hirscher M, Becher M, Haluska M, et al . J . Alloys Comp. ,2002 , 330/332 : 654 —658
[23] Pradhan B K, Harutyunyan A , Stojkovic D , et al . Materials Research Society Symp. Proc. , 2002 , 706 : Z10. 3. 1 —Z10. 3. 6
[24] Züttel A , Nützenadel C , Sudan P , et al . J . Alloys Comp. ,2002 , 330/332 : 676 —682
[25] Smith M R , Bittner E W, Bockrath B C. Preprints of Symposia , American Chemical Society , Division of Fuel Chemistry , 2002 , 47 (2) : 784 —785
[26] Lupu D , Biris A R , Misan I , et al . Particulate Science and Technology , 2002 , 20 (3) : 225 —234
[27] Gabis I E , Evard E A , Gordeev S K, et al . NATO Science Series II : Mathematics , Physics and Chemistry , 71 (Hydrogen Materials Science and Chemistry of Metal Hydrides ) . Kluwer Academic Publishers , 2002. 383 —390
[28] Pradhan B K, Harutyunyan A R , Eklund P C. Preprints of Symposia , American Chemical Society , Division of Fuel Chemistry , 2002 , 47 (2) : 477 —480
[29] Tang C C , Bando Y, Ding X X, et al . J . Am. Chem. Soc. ,2002 , 124 (49) : 14550 —14551
[30] Zhu H W, Li X S , Ci L J , et al . Mater. Chem. &Phys. , 2003 ,78 : 670 —675
[31] Kajiura H , Tsutsui S , Kadono K, et al . Applied Physics Letter ,2003 , 82 (7) : 1105 —1107
[32] Lueking A , Yang R T. AIChE Journal , 2003 , 49 (6) : 1556 —1568
[33] Gao H , Wu X B , Li J T , et al . Applied Physics Letter , 2003 , 83(16) : 3389 —3391
[34] Hanada K, Shiono H , Matsuzaki K. Diamond and Related Materials , 2003 , 12 : 874 —877
[35] Hou P X, Xu S T , Ying Z , et al . Carbon , 2003 , 41 : 2471 —2476
[36] Shaijumon M M, Ramaprabhu S. Chemical Physics Letters , 2003 ,374 : 513 —520
[37] Tibbetts G G, Meisner C P , Olk C H. Carbon , 2001 , 39 :2291 —2301
[38] Shiraishi M, Takenobu T , Ata M. Chemical Physics Letters ,2003 , 367 : 633 —636
[39] Loutfy R O , Moravsky A , Franco A , et al . Perspectives of Fullerene Nanotechnology ( ed. Osawa E) . Dordrecht : Klu-wer Academic Publishers , 2002. 327 —339
[40] Ritschel M, Uhlemann M, Gutfleisch O , et al . Applied Physics Letters , 2002 , 80 (16) : 2985 —2987
[41] Zhou Y P , Feng K, Sun Y, et al . Chem. Phys. Lett . , 2003 ,380(5/6) : 526 —529
[42] Leung W B , March N H , Motz H. Physics Letters A , 1976 , 56(6) : 425 —426
[43] Zhou L , Zhou Y P , Sun Y. Int . J . Hydrogen Energy , 2004 , 29(5) : 475 —479
[44] 周理(Zhou L) , 周亚平(Zhou Y P) . 中国科学B (Science in China B) , 1996 , 26 (5) : 473 —480
[45] Ruthven D M. Principles of Adsorption and Adsorption Processes.New York : John Wiley &Sons , 1984. chapter 3
[46] Ma Y, Xia Y, Zhao M, et al . Phys. Rev. B , 2001 , 63 : 115422
[47] Zhou Y P , Zhou L. Sep. Sci . & Technol . , 1998 , 33 ( 12) :1787 —1802
[48] Zhou L , Zhou Y P. Chem. Eng. Sci . , 1998 , 53 (14) : 2531 —2536
[49] Zhou L , Zhou Y P. Chinese J . Chem. Eng. , 2001 , 9 ( 1) :110 —115
[50] Zhou L , Zhang J S , Zhou Y P. Langmuir , 2001 , 17 ( 18) :5503 —5507
[51] ZhouL , Zhou Y P , Li M, et al . Langmuir , 2000 , 16 ( 14) :5955 —5959
[52] Brunauer S , Emmett P H , Teller E. J . Am. Chem. Soc. , 1938 ,60 (2) : 309 —319
[53] Beebe B A , Biscoe J , Smith W R , et al . J . Am. Chem. Soc. ,1947 , 69 (1) : 95 —101
[54] Strêbel R , Jêrisen L , Schliermann T , et al . J . Power Sources ,1999 , 84 : 21
[55] Nijkamp M G, Raaymakers J E M J , van Dillen A J , et al . Appl .Phys. A , 2001 , 72 : 619 —623
[56] Zhou L , Zhou Y P , Sun Y. Int . J . Hydrogen Energy , 2004 , 29(3) : 319 —322
[57] 周亚平(Zhou Y P) , 冯奎(Feng K) , 孙艳(Sun Y) 等. 化学进展(Progress in Chemistry) , 2003 , 15 (5) : 345 —350
[58] Braslaw J , Nasen J Jr , Golovoy A. Hydrocarbon Technology Environment , Alternative Energy Sources ( ed. Veziroglu T N) .1981
[59] Matranga K R , Myers A L , Glandt E D. Chem. Eng. Sci . ,1992 , 47 (7) : 1569 —1579
[60] McDonald J A F , Quinn D F. Fuel , 1998 , 77 (1/2) : 61 —64
[61] Inomata K, Kanazawa K, Urabe Y, et al . Carbon , 2002 , 40 :87 —93
[62] 周理(Zhou L) , 孙艳(Sun Y) , 周亚平(Zhou Y P) . CN 01141 967. 9
[63] Zhou L , Sun Y, Zhou Y P. AIChE Journal , 2002 , 48 : 2412 —2416
[64] Zhou L , Dai M, Zhou Y P. Carbon , 2004 , 42 (8/9) : 1855 —1858
[65] 陈海华(Chen H H) . 天津大学硕士学位论文(MS Thesis of Tianjin U. , 2002)
[66] 代淼(Dai M) , 周理(Zhou L) , 周亚平(Zhou Y P) . 化学进展(Progress in Chemistry) , 2004 , 747 —750

[1] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[2] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[5] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[6] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[7] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[8] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[9] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[10] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[11] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[12] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[13] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[14] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[15] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.