中文
Announcement
More
Progress in Chemistry 2005, Vol. 17 Issue (04): 643-650 Previous Articles   Next Articles

• Review •

Study on the Hydrogen Production by Thermochemical Water Splitting

Zhang Ping**;Yu Bo;Chen Jing;Xu Jingming   

  1. Institute of Nuclear Energy Technology, Tsinghua Universily,Beijing 100084,China
  • Received: Revised: Online: Published:
  • Contact: Zhang Ping
PDF ( 4145 ) Cited
Export

EndNote

Ris

BibTeX

Thermochemical water splitting is a promising method to produce massive hydrogen using nuclear reactor or solar energy without CO2 releasing. Thermochemical processes developed and the criteria of evaluation are discussed and reviewed. The emphasis is on the most promising processes, including iodine-sulfur (IS) process, UT-3 process and Westinghouse process.

CLC Number: 

[ 1 ] 王艳辉(Wang Y H) , 吴迪镛(Wu D Y) , 迟建(Chi J ) . 化工进展(Chemical Industry and Engineering Progress) , 2001 , 1 : 6
[ 2 ] 李乃朝( Li N C ) , 衣宝廉( Yi B L ) . 电化学(Electrochemistry) , 1997 , 3(2) : 125 —131
[ 3 ] 衣宝廉(Yi B L) . 中国电池工业(Chinese Battery Industry) ,2003 , 8(1) : 16 —24
[ 4 ] IAEA. Hydrogen as an Energy Carrier and Its Production by Nuclear Power. IAEA-TECDOC-1085 , 1999. 101 —130
[ 5 ] Rogner H H. Nuclear Production of Hydrogen , First Information Exchange Meeting. Paris , 2000. 11 —24
[ 6 ] Funk J E. Int . J . Hydrogen Energy , 2001 , 26 : 185 —190
[ 7 ] Kogan A. Int . J . Hydrogen Energy , 1997 , 22(5) : 481 —486
[ 8 ] Funk J E , Reinstrom M R. Final Report Energy Depot Electrolysis Systems Study , TID 20441 , Vol . 2 , supplement A , 1964
[ 9 ] Beghi G E. Int . J . Hydrogen Energy , 1986 , 11(12) : 761 —771
[10] Besenbruch G E , Brown L C , Funk J E , et al . Nuclear Production of Hydrogen , First Information Exchange Meeting.Paris , 2000. 205 —218
[11] Nakamura T. Solar Energy , 1977 , 19 : 467 —475
[12] Steinfeld A , Sanders S , Palumbo R. Solar Energy , 1999 , 56(1) :43 —53
[13] Weidenkaff A , Reller A W, Wokaun A , et al . Thermochimica Acta , 2000 , 359 : 69 —75
[14] Steinfeld A. Int . J . Hydrogen Energy , 2002 , 27 : 611 —619
[15] Sturzenegger M, Nuesch P. Energy , 1999 , 24 : 959 —970
[16] Lundberg M. Int . J . Hydrogen Energy , 1993 , 18 : 369 —376
[17] Tamaura Y, Kojima N , Hasegawa N , et al . Int . J . Hydrogen Energy , 2001 , 26 : 917 —923
[18] Kuhn P , Ehrensberger K, Steiner E , et al . Solar Engineering.New York : American Society of Mechanical Engineers , 1995. 375
[19] Ehrensberge K, Frei A , Kuhn P , et al . Solid State Ionics , 1995 ,56 : 151 —160
[20] Kojima M, Sano T , Wada Y, et al . J . Phys. Chem. Solids ,1996 , 57 : 1757 —1763
[21] IAEA. Hydrogen as an Energy Carrier and Its Production by Nuclear Power. IAEA-TECTOD-1085 , 1999. 325 —332
[22] Norman G H , Besencruch L C , Brown L C , et al . Thernochemical Water-Splitting Cycle , Bench-scale Investigations and Process Engineering , Final Repoert for Ther Period February 1977 through December 31 , 1981. GA-A16713 , 1982
[23] Shiozawa S , Ogawa M, Inagaki Y, et al . Nuclear Production of Hydrogen , First Information Exchange Meeting. Paris , 2000.57 —69
[24] Onuki K, Nakajiama H. AIChE Spring National Meeting. New Orleans , 2003
[25] Duigou A L , Vitart X, Anzieu P. Global 2003. New Orleans ,2003. 1470 —1477
[26] Roth M, Knoche K F. Int . J . Hydrogen Energy , 1989 , 14 : 545
[27] Berndhaeuser C , Knoche K. Int . J . Hydrogen Energy , 1994 , 19 :239
[28] Onuki K, Hwang G J , Arifal S , et al . Journal of Membrane Science , 2001 , 192 : 193 —199
[29] Onuki K, Hwang G J , Shimizu S. Journal of Membrane Science ,2000 , 175 : 171 —179
[30] Hwang G J , Onuki K, Nomura M, et al . Journal of Membrane Science , 2003 , 220 : 129 —136
[31] Hwang G J , Onuki K. Journal of Membrane Science , 2001 , 194 :207 —215
[32] Hwang G J , Onuki K, Shimizu S. AIChEJ . , 2000 , 46 : 92 —98
[33] Porisini F C. Int . Journal of Hydrogen Energy , 1989 , 14 (4) :267 —274
[34] Futakawa M, Onuki K, Ioka I. Corrosion Engineering , 1997 , 46 :811 —819
[35] Kubo S , Futakawa M, Ioka I , et al . Spring National Meeting.New Orleans , 2003
[36] Yoshida K, Kameyama H , Aochi T , et al . Int . J . Hydrogen Energy , 1990 , 15 : 171 —178
[37] Sakurai M, Bilgen E , Tsutsumi A , et al . Solar Energy , 1996 , 57(1) : 51 —58
[38] Sakurai M, Tsutsumi A , Yoshida K. Int . J . Hydrogen Energy ,1995 , 20(4) : 297 —301
[39] Sakurai M, Tsutsumi A , Yoshida K. Int . J . Hydrogen Energy ,1996 , 21(10) : 871 —875
[40] Doctor R D , David C W, Mendelsohn M H. AIChE Spring National Meetintg. New Orleans , 2002
[41] Oney B , Saito Y. Oxidation Metals , 1993 , 40 : 65 —83
[42] Smudde G H. Corrosion Science , 1995 , 37 : 1931 —1946
[43] Goossen J E , Lahoda E J , Matzie R A , et al . Global 2003. New Orleans , 2003. 1509 —1513
[44] Smith W N , Santangelo J G. Hydrogen : Production and Marketing. Washington D C: American Chemical Society , 1980.374
[45] Weirich W, Knoche K F , Behr F , et al . Nucl . Eng. Des. ,1984 , 78 : 285 —291
[46] Barnert H. Report Jül21660 , Research Center Jülich. 1980
[47] Herzok F. Technical Report , Document HUF-4 , Research Center Jülich , 1990. 99 —103
[48] Besenbruch G E. Brown L C , Funk J E , et al . First Information Exchange Meeting. Paris , 2000. 205 —218

[1] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[2] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[3] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.
[4] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[5] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[6] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.
[7] Shiliang Zhang, Qilu Yao, Zhanghui Lu*. Synthesis and Dehydrogenation of Hydrazine Borane [J]. Progress in Chemistry, 2017, 29(4): 426-434.
[8] Zhang Yuanzheng, Xie Lili, Zhou Yijing, Yin Lifeng*. 2D Z-Scheme Photocatalyst and Its Application in Environmental Purification and Solar Energy Conversion [J]. Progress in Chemistry, 2016, 28(10): 1528-1540.
[9] Wang Dongdong, Dong Hua, Lei Xiaoli, Yu Yue, Jiao Bo, Wu Zhaoxin. Iridium Complexes for Triplet Photosensitizer [J]. Progress in Chemistry, 2015, 27(5): 492-502.
[10] Zhai Kang, Li Kongzhai, Zhu Xing, Wei Yonggang. Oxygen Exchange Materials Used in Two-Steps Thermochemical Water Splitting for Hydrogen Production [J]. Progress in Chemistry, 2015, 27(10): 1481-1499.
[11] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[12] Zhang Chao, Yin Xiuli, Wu Chuangzhi. Reactors for Hydrogen Production by Bio-Ethanol Reforming [J]. Progress in Chemistry, 2011, 23(4): 810-818.
[13] Xu Chenhong, Han You, Chi Mingyang. Cu2O-Based Photocatalysis [J]. Progress in Chemistry, 2010, 22(12): 2290-2297.
[14] . Steam Reforming of Bio-Oil or Its Model Compounds for Hydrogen Production [J]. Progress in Chemistry, 2010, 22(09): 1687-1700.
[15] . Hydrogen Production by Microbial Electrolysis Cells [J]. Progress in Chemistry, 2010, 22(04): 748-753.