中文
Announcement
More
Progress in Chemistry 2005, Vol. 17 Issue (03): 423-429 Previous Articles   Next Articles

• Review •

Recent Advances in Hydrogen Generation with Chemical Methods

Wu Chuan;Zhang Huamin*;Yi Baolian   

  1. Fuel Cell R&D Center, Dalian Institute.of Chemical Physics, Chinese Academy of Sciences,Dalian 116023,China
  • Received: Revised: Online: Published:
  • Contact: Zhang Huamin
PDF ( 3842 ) Cited
Export

EndNote

Ris

BibTeX

Recent advances in hydrogen generation with chemical methods are reviewed. As an attractive alternative energy source, hydrogen energy has been studied widely and intensively. Among the three hydrogen generation modes, (l) with chemical methods (2) from electrolysis of water (3) by biologic methods, the first is the major method for mass production of hydrogen, in which catalysis reforming holds a large proportion of the total output. Along with the developments of fuel cell techniques, novel hydrogen generation techniques, such as hydrogen generation with biomasses, metals, solar energy or metal hydrides, have attracted more and more attention. These hydrogen generation techniques have a promising future in the coming hydrogen age, accompanied with the R&D of fuel cells and hydrogen engines.

CLC Number: 

[ 1 ] Hefner III R A. Int . J . Hydrogen Energy , 1995 , 20 (12) : 945 —948
[ 2 ] Cohen R , Olesen O , Faintani J , Suljak G, US 4 870 511 ,1989
[ 3 ] Wananabe T, Hirata T, Mizusawa M. IHI Eng. Rev. , 4 (Oct . ) ,1988
[ 4 ] Astanovsky D L , Astanovsky L Z, Raikov B S , Korchaka N I.Hydrogen Energy Progress IX, Proceeding of 9th World Energy Conference. Paris ,1992
[ 5 ] Wertheim R. Sederquist R. US 4 816 353 , 1989
[ 6 ] Dicks A L. J . Power Sources , 1996 , 61 (1P2) : 113 —124
[ 7 ] Rampe T, Heinzel A , Vogel B. J . Power Sources , 2000 , 86 (1/2) : 536 —541
[ 8 ] Han J , Kim Il S , Choi K S. Int . J . Hydrogen Energy , 2002 , 27(10) : 1043 —1047
[ 9 ] Edwards N , Ellis S R , Frost J C , Golunski S E , van Keulen A N J , Lindewald N G, Reinkingh J G. J . Power Sources , 1998 , 71(1/2) : 123 —128
[10] Lindstrêm B , Pettersson L J . Int . J . Hydrogen Energy , 2001 , 26(9) : 923 —933
[11] Klouz V , Fierro V , Denton P , Katz H , Lisse J P , Bouvot Mauduit S , Mirodatos C. J . Power Sources , 2002 , 105 (1) : 26 —34
[12] Mariìo F J , Cerrella E G, Duhalde S , Jobbagy M, Laborde M A.Int . J . Hydrogen Energy , 1998 , 23 (12) : 1095 —1101
[13] Xu X, Matsumura Y, Stenberg J , Antal M J Jr. Ind. Eng.Chem. Res. , 1996 , 35 (8) : 2522 —2530
[14] Minowa T, Ogi T. Catal . Today , 1998 , 45 (1P4) : 411 —416
[15] Kruse A , Meier D , Rimbrecht P , Schacht M. Ind. Eng. Chem.Res. , 2000 , 39 (12) : 4842 —4848
[16] Watanabe M, Inomata H , Arai K. Biomass and Bioenergy , 2002 ,22 (5) : 405 —410
[17] Fujishima A , Honda K. Nature , 1972 , 238 : 37
[18] Li Y, Lu G, Li S. Applied Catalysis A: General , 2001 , 214 (2) :179 —185
[19] Sayamak K, Arakawa H. J . Phys. Chem. , 1993 , 97 (3) : 531 —533
[20] Liu S H , Wang H P. Int . J . Hydrogen Energy , 2002 , 27 (9) :859 —862
[21] Domen K, Kudo A , Onishi T. J . Catal . , 1986 , 102 (1) : 92 —98
[22] Shangguan W, Zhang M, Yuan J , Gu M. Solar Energy Materials &Solar Cells , 2003 , 76 (2) : 201 —204
[23] Shangguan W, Yoshida A. Solar Energy Materials & Solar Cells ,2001 , 69 (2) : 189 —194
[24] Kojima Y, Suzuki K, Fukumoto K, Sasaki M, Yamamoto T,Kawai Y, Hayashi H. Int . J . Hydrogen Energy , 2002 , 27 (10) :1029 —1034
[25] Amendola S C , Binder M, Kelly M T, Petillo P J , Sharp-Goldman S L. Advances in Hydrogen Energy(eds. Grégoire Padró C E , Lau F) . New York : Kluwer Academic/Plenum Publishers , 2002.69 —86
[26] Han J , Lee S M, Chang H. J . Power Sources , 2002 , 112 (2) :484 —490
[27] Uehara K, Takeshita H , Kotaka H. J . Mater. Pro. Tech. ,2002 , 127 : 174 —177
[28] Otsuka K, Yamada C , Kaburagi T, Takenaka S. Int . J . Hydrogen Energy , 2003 , 28 (3) : 335 —342
[29] Abe R , Sayama K, Arakawa H. Chem. Phys. Letters , 2003 , 371(3/4) : 360 —364
[30] Lee K, Nam W S , Han G Y. Int . J . Hydrogen Energy , 2004 , 29(13) : 1343 —1347
[31] Steinfeld A , Kuhn P , Reller A , Palumbo R , Murray J , Tamaura Y. Int . J . Hydrogen Energy , 1998 , 23 (9) : 767 —774
[32] Wu C , Zhang H , Yi B. Catal . Today , 2004 , 93P95 : 477 —483
[33] Kojima Y, Kawai Y, Kimbara M, Nakanishi H , Matsumoto S.Int . J . Hydrogen Energy , 2004 , 29 (12) : 1213 —1217

[1] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[2] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[3] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[4] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[5] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[6] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[7] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[8] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.
[9] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[10] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[11] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[12] Xingxing Guo, Hang Gao, Lifeng Yin, Siyu Wang, Yunrong Dai, Chuanping Feng. Photo-Thermal Conversion Materials and Their Application in Desalination [J]. Progress in Chemistry, 2019, 31(4): 580-596.
[13] Ningning Cao, Songtao Lu, Rui Yao, Huimin Li, Wei Qin, Xiaohong Wu. Solar Spectrum Selective Absorbing Coatings [J]. Progress in Chemistry, 2019, 31(4): 597-612.
[14] Yajing Chen, Xubing Li, Chenho Tung, Lizhu Wu. Artificial Photosynthesis for Hydrogen Production [J]. Progress in Chemistry, 2019, 31(1): 38-49.
[15] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.