中文
Announcement
More
Progress in Chemistry 2005, Vol. 17 Issue (02): 299-309 Previous Articles   Next Articles

• Review •

The Synthesis of Polydiaminonaphthalene and Its Highly Reactive   Adsorption for Heavy Metal Ions

Huang Meirong   Li Xingui**   Li Shengxian   

  1. ( Institute of Materials Chemistry , Laboratory of Concrete Materials Research , College of Materials Science & Engineering , Tongji University , Shanghai 200092 , China)
  • Received: Revised: Online: Published:
  • Contact: Li Xingui E-mail:lixingui @tongji. edu. cn
PDF ( 2333 ) Cited
Export

EndNote

Ris

BibTeX

Polydiaminonaphthalene is a new type of conducting polymer following polyaniline and polypyrrole , which possess new multiple functionalities owing to the amine and secondary amino groups in the polymer chain. The chemically and electrochemically oxidative synthesis of 1 ,8-,1 ,5-and 2 ,3- diaminonaphthalene , as well as their ad2 sorptions for heavy metal ions via complexation or redox , are systematically reviewed based on our recent research and the latest literature. The characteristics of the two synthetic methods are compared in detail . It is pointed out that polydiami2 nonaphthalene2modified electrodes sensitive to heavy metal ions ,such as Ag+ ,Pb2+ ,Hg2+ ,Cu2+ ,VO2+ ,could be sim2 ply obtained by electrochemically oxidative polymerization. The polydiaminonaphthalene particles having a prodigious re2 duction adsorption capacity for Ag+ could be prepared with a high yield by chemically oxidative polymerization. The polydiaminonaphthalenes have shown a great potential development in analysis and detection for trace metallic ions , as well as the recovery of precious metal ions and removal of heavy metal ions from water effluents.

CLC Number: 

[ 1 ] Li X G, Huang M R , Duan W, et al . Chem. Rev. , 2002 , 102 :2925 —3030
[ 2 ] Majid S , Rhazi M E , Amine A , et al . Microchimica Acta , 2003 ,143 : 195 —204
[ 3 ] Jackowska K, Bukowska J , Jamkowski M. J . Electroanal .Chem. , 1995 , 388 : 101 —108
[ 4 ] Salcedo R , Salmon M, Aguilar M, et al . Polymer , 2001 , 42 :8737 —8742
[ 5 ] Lee J W, Park D S , Shim Y B , et al . J . Electrochem. Soc. ,1992 , 139 : 3507 —3514
[ 6 ] Nasalska A , Skompska M. J . Appl . Electrochem. , 2003 , 33 :113 —119
[ 7 ] Oyama N , Sato M, Ohsaka T. Synth. Met . , 1989 , 29 : E501 —E506
[ 8 ] Azzem M A , Yousef U S , Limosin D , et al . Synth. Met . , 1994 ,63 : 79 —81
[ 9 ] Azzem M A , Yousef U S , Limosin D , et al . J . Electroanal .Chem. , 1996 , 417 : 163 —173
[10] Azzem MA , Yousef U S , Pierre G. Eur. Polym. J . , 1998 , 34 :819 —826
[11] Jin C S , Shim Y B , Park S M. Synth. Met . ,1995 , 69 : 561 —562
[12] Meneguzzi A , Pham M C , Ferreira C A , et al . Synth. Met . ,1999 , 102 : 1390 —1391
[13] Pham M C , Oulahyane M, Mostefai M, et al . Synth. Met . ,1998 , 93 : 89 —96
[14] Pham M C , Oulahyane M, Mostefai M, et al . Synth. Met . ,1997 , 84 : 411 —412
[15] Shim YB , Park J H. J . Electrochem. Soc. , 2000 , 147 : 381 —385
[16] Palys B J , Skompska M, Jackowska K. J . Electroanal . Chem. ,1997 , 433 : 41 —48
[17] Skompska M, Hillman A R. J . Chem. Soc. , Faraday Trans. ,1996 , 92 : 4101 —4108
[18] Palys B J , Bukowaka J , Jackowska K. J . Electroanal . Chem. ,1997 , 428 : 19 —24
[19] Jackowska K, Kudelski A , Bukowska J . Materials Science Forum,1995 , 191 : 247 —250
[20] Kudelski A , Bukowska J , Jackowska K. J . Mol . Struct . , 1999 ,482/483 : 291 —294
[21] Ohsake T , Watanabe T , Kitamura F , et al . J . Chem. Soc. ,Chem. Commun. , 1991 , 487 —489
[22] Jackowska K, Skompska M, Przyluska E. J . Electroanal .Chem. , 1996 , 418 : 35 —39
[23] Li X G, Duan W, Huang M R , et al . Polymer , 2003 , 44 :5579 —5595
[24] Li X G, Duan W, Huang M R , et al . Polymer , 2003 , 44 :6273 —6285
[25] Li X G, Huang M R , Yang YL. Polymer , 2001 , 42 : 4099 —4107
[26] Badea M, Amine A , Palleschi G, et al . J . Electroanal . Chem. ,2001 , 509 : 66 —72
[27] Murphy L J . Anal . Chem. , 1998 , 70 : 2928 —2935
[28] Turdean G L , Curulli A , Popescu I C , et al . Electroanalysis ,2002 , 14 : 1550 —1556
[29] Vidal J C , Espuelas J , Garcia-Ruiz E , et al . Analytical Letters ,2002 , 35 : 837 —853
[30] Vidal J C , Garcia-Ruiz E , Espuelas J , et al . Anal . Bioanal .Chem. , 2003 , 377 : 273 —280
[31] Akbari A , Mousavi M F , Shamsipur M, et al . Talanta , 2003 ,60 : 853 —859
[32] Karami H , Mousavi M F , Shamsipur M. Analytica Chimica Acta ,2003 , 481 : 213 —219
[33] Hong S Y, Park S M. J . Electrochem. Soc. , 2003 , 150 :E360 —E365
[34] 常文保(Chang W B) , 李克安(Li K A) . 简明分析化学手册(Compendious Handbook for Anal . Chem. ) . 北京(Beking) : 北京大学出版社(Beking University Publishing Company) , 1981.182 —199
[35] 崔元臣(Cui Y C) , 陈权(Chen Q) , 马跃东(Ma Y D) . 应用化学(Chin. J . Appl . Chem. ) , 2002 , 19 (10) : 968 —971
[36] Chen S X, Zeng H M. Carbon , 2003 , 41 : 1265 —1271
[37] Yue Z R , Jiang W, Wang L , et al . Carbon , 1999 , 37 : 1607 —1618
[38] Kudelski A , Bukowska J , Jackowska K. Synth. Met . , 1998 , 95 :87 —91

[1] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[2] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[5] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[6] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[7] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[8] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[9] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[10] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[11] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[12] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[13] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[14] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[15] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.