中文
Announcement
More
Progress in Chemistry 2005, Vol. 17 Issue (01): 55-64 Previous Articles   Next Articles

• Review •

Electrochemistry of Diamond Thin Film

Zhi Jinf ang* Tian Ruhai   

  1. (Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100101 , China)
  • Received: Revised: Online: Published:
  • Contact: Zhi Jinfang E-mail:Zhi2mail @mail. ipc. ac. cn
PDF ( 2468 ) Cited
Export

EndNote

Ris

BibTeX

Diamond has received great interest for its excellent physical and chemical properties since several hundred years ago. Highly boron2doped diamond (BDD) polycrystalline thin films fabricated by CVD opened newfrontiers of diamond thin film application in electrochemical fields. As a new carbon2based electrode material , BDD electrode is superior to many other carbon2based and metal electrode materials. It possesses many unique electrochemical properties , including a wide potential window , very low background current , and extreme chemical stability to deactivation via fouling. Several important applications of BDD electrode in electroanalysis , electrosynthesis and electrochemical wastewater treatment are summarized.

CLC Number: 

[1] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[2] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[3] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[4] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[5] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[6] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[7] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[8] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[9] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[10] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[11] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[12] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[13] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[14] Jinling Wang, Yuzhen Wen, Hualin Wang, Honglai Liu, Xuejing Yang. FeOCl and Its Intercalation Compounds: Structures, Properties and Applications [J]. Progress in Chemistry, 2021, 33(2): 263-280.
[15] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
Viewed
Full text


Abstract

Electrochemistry of Diamond Thin Film