中文
Announcement
More
Progress in Chemistry 2004, Vol. 16 Issue (06): 962- Previous Articles   Next Articles

• Review •

Determination of the Intracellular NAD(P)H Level

Chen Yahong;Liu Zhihong;Cai Ruxiu**;Liu Zhixin   

  1. (College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China)
  • Received: Revised: Online: Published:
  • Contact: Cai Ruxiu
PDF ( 5141 ) Cited
Export

EndNote

Ris

BibTeX

The intracellular NAD(P)H level plays a pivotal role in numerous biological process such as rhythm, se-nescence, cancer and death. The study of the intracellular NAD(P)H level is one of the hotspots in biomedical research. In this paper, current technical development in determination of the intracellular NAD(P)H level is reviewed.

CLC Number: 

[ 1 ] Kuhn W, Muller T, Winkel R , et al . J . Neural . Transm. ,1996 , 103 : 1187 —1193
[ 2 ] Swerdlow R H. Drugs &Aging , 1998 , 13 : 263 —268
[ 3 ] Zhang J R , Vreck K, Nadlinger K, et al . J . Tumor Mark Oncol . , 1998 , 13 : 5
[ 4 ] Birkmayer J G D , Vrecko C , Volc D , et al . Acta Neurol .Scand. , 1993 , 146 : 32 —35
[ 5 ] Roderick K. CFFIDS Chronicle , 1998 , 11 : 25
[ 6 ] Ray Sahelian M D. Better Nutrition , 1998 , 60 : 36
[ 7 ] Kelley D E , He J , Menshikova E V , et al . Diabetes , 2002 , 51 :2944 —2950
[ 8 ] Lin S J , Guarente L. Current Opinion in Cell Biology , 2003 , 15 :241 —246
[ 9 ] Jonas S K, Benedetto C , Flatman A , et al . Br. J . Cancer ,1992 , 66 : 185
[10] Gruarente L , Kenyen C. Nature , 2000 , 408 : 255 —262
[11] Kenyen C. Cell , 2001 , 105 : 165 —168
[12] Finkel T, Holbrook N J . Nature , 2000 , 408 : 239 —247
[13] Mclay C , Crowell M, Maynard L. J . Nutr. , 1935 , 10 : 63 —79
[14] Anderson R M, Bitteman K J , Wood J G, et al . Biochemistry ,2002 , 21 : 18881 —18890
[15] Lin S J , Guarente L. Current Opinion in Cell Biology , 2003 , 15 :241 —246
[16] Chenault H K. Appl . Biochem. Biotechnol . , 1987 , 14 : 147
[17] Willner I , Mandler D. Enzyme Micro. Technol . , 1989 , 11 : 467
[18] Brambilla L , Satili P , Guidarelli A , et al . J . Pharm. Exp. Therap. , 1998 , 284 : 1112 —1121
[19] Birkmayer G D. All about NADH. New York : Avery , 2000. 1 —95
[20] Harden A , Young WJ . Proc. Roy. Soc. London B , 1906 , 78 :369 —375
[21] Dane S , Sorensen P G, Hynne F. Nature , 1999 , 402 : 320 —322
[22] Stucki J W. Euro. J . Biochem. , 1980 , 109 : 257 —267
[23] Wolf J , Passarge J , Somason O J G, et al . Biophys. J . , 2000 ,78 : 1145 —1153
[24] Yamagaki S , Miki S , Kano K, et al . J . Electroanal . Chem. ,2001 , 516 : 59 —65
[25] Murray D B. Microbiology , 1999 , 145 : 2739 —2745
[26] Jack C. Let’s Live , 1998 , 66 : 50 —53
[27] Mongan P D , Capacchione J , West S , et al . Am. J . Physiol .Heart Circ. Physiol . , 2002 , 283 : H1634 —H1644
[28] Kenyen C. Cell , 2001 , 105 : 165 —168
[29] Ferbeyre G, Lowe S W. Nature , 2002 , 415 : 26 —27
[30] Zhang Q , Piston D W, Goodman R H. Science , 2002 , 295 :1895 —1897
[31] Yamazaki S , Miki K, Kano K, et al . J . Electroanal . Chem. ,2001 , 516 : 59 —65
[32] Obrosova I G, Fathallah L , Lang H J . Biochem. Pharmaco. ,1999 , 58 : 1945 —1954
[33] Park J W, Chun Y S , Kim M S , et al . Int . J . Cardiol . , 1998 ,65 : 139 —147
[34] Williamson D H , Lund P , Krebs H A. Biochem. J . , 1967 , 103 :514 —527
[35] Noll F , Bergmeyer H U. Methods of Enzymatic Analysis , 3rd ed ,vol 7 , 1984. 582 —588
[36] Lamprechi W, Heinz F , Bergmeyer H U. Methods of Enzymatic Analysis , 3rd ed , vol 7 , 1984. 570 —577
[37] Williamson J R , Scholz R , Browning E T. J . Biol . Chem. ,1969 , 244 : 4617 —4627
[38] Griffiths E J , Lin H , Suleiman M S. Biochem. Pharmaco. ,1998 , 56 : 173 —179
[39] Takeuchi S , Ando M. Hearing Research , 1997 , 114 : 69 —74
[40] Kaczmarek A S. Int . J . Biochem. , 1990 , 22 : 617 —620
[41] 戴晨阳(Dai C Y) ,吴洪章(Wu H Z) ,李秀梅(Li X M) , et al .天津医科大学学报(J . Tianjin Medical University) , 1998 , 4 :334 —337
[42] 郑文建(Zheng W J ) ,肖南(Xiao N) ,陆松敏(Lu S M) . 国外医学·生理、病理科学与临床分册( Foreign Medical Sciences ,Section of Pathophysiology and Clinical Medicine ) , 2002 , 22 :418 —420
[43] Williams H , King N , Griffiths E J , et al . J . Mol . Cell Cardiol . ,2001 , 33 : 2109 —2119
[44] Brands R , Bers D M. Biophys. J . , 1996 , 71 : 1024 —1035
[45] Minezaki K K, Suleian M S , Chapman R A. J . Physiol . , 1994 ,476 : 459 —471
[46] Rex A , Pfeifer L , Fink F , et al . J . Neurosci . Res. , 1999 , 57 :359 —370
[47] Obi-Tabot E T, Hanmban L M, Cacheccho R , et al . J . Surg.Res. , 1993 , 55 : 575 —580
[48] Brambilla L , Satili P , Guidarelli A , et al . J . Pham. Exp. Therap. , 1998 , 284 : 1112 —1121
[49] Fernandes M A S , Geraldes C F G C , Oliveira C R , et al . Ecotoxicol . Environ. Saf . , 2000 , 47 : 39 —42
[50] Guilbault G G, Kramer D N. Anal . Chem. , 1965 , 37 : 120 —123
[51] Zhou M, Diwu Z, Panchuk-Voloshina N , et al . Anal . Biochem. ,1997 , 253 : 162 —168
[52] Nicola L , Maidwell M, Reza R , et al . J . Chem. Soc. , Perkin Trans. 1 , 2000 , 1541 —1546
[53] Piston D W, Knobel S M. TEM, 1999 , 10 : 413 —417
[54] Yasunari K, Kohno M, Kano H , et al . Circulation , 1999 , 10 :1370 —1378
[55] Anderso R E , Tan W K, Martin H S , et al . Stroke , 1999 , 30 :160 —170
[56] Halangk W, Kunz W S. Biochim. Biophys. Acta , 1991 , 1056 :273 —278
[57] Dukes I D , Sreenan S , Roe M W, et al . J . Biol . Chem. , 1998 ,273 : 24457 —24464
[58] Wang X F , Florine-Casteel K, Lemasters J J , et al . J . Fluoresc. , 1995 , 5 : 71
[59] Miyakawa A. Bunseki , 1995 , (7) : 569
[60] Lahooti S , Yueh H K, Neumann A W. Collids Surf . , B , 1995 ,3 : 333 —342
[61] Dellinger M, Geze M, Santus R , et al . Biotechnol . Appl . Biochem. , 1998 , 28 : 25 —32
[62] Coremans J M, Ince C , Bruining H A , et al . Biophys. J . , 1997 ,72 : 1849 —1860
[63] Hashimoto M, Takeda Y, Sato T, et al . Brain Res. , 2000 , 872 :394 —300
[64] Anderson R E , Meyer F B. Methods Enzymol . , 2002 , 352 :482 —494
[65] Diliverto P A , Wang X F , Herman B. Methods Cell Biol . , 1994 ,40 : 243
[66] Bacskai B J , Wallen A K, Lev-Ram V , et al . Neuron , 1995 ,14 : 19
[67] Hama T, Takahashi A , Ichihara A , et al . Cell Signal , 1998 , 10 :331 —337
[68] Psarra A M, Bochaton-Piallat M L , Gabbiani G, et al . Glia ,2003 , 41 : 38 —39
[69] Shukla A , Jung M, Stern M, et al . Am. J . Physiol . Lung Cell Mol . Physiol . , 2003 , 285 : 1L1018 —L1025
[70] Nieminen A L , Byrne A M, Herman B , et al . Am. J . Physiol .Cell Physiol . , 1997 , 272 : C1286 —C1294
[71] Masters B R , So P T, Gratton E , et al . Ann. NY Acad. Sci . ,1998 , 838 : 58 —67
[72] Bennett B D , Jetton TL , Ying G, et al . J . Biol . Chem. , 1996 ,271 : 3647 —3651

[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[3] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[4] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[5] Timothy D. Huang. Condensed Matter Chemical Reactions in PaleoChemistry [J]. Progress in Chemistry, 2022, 34(7): 1626-1641.
[6] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[7] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[8] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[9] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[10] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[11] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[12] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[13] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[14] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[15] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.