中文
Announcement
More
Progress in Chemistry 2004, Vol. 16 Issue (01): 131- Previous Articles   Next Articles

• Review •

Distribution, Speciation, Toxicity and Bioavailability of Antimony in the Environment*

He Mengchang**;Wan Hongyan   

  1. (State Key Joint Laboratory of Environmental Simulation and Pollution Control, Institute of Environmental Sciences, Beijing Normal University, Beijing 100875, China)
  • Received: Revised: Online: Published:
  • Contact: Liang Xinmiao
PDF ( 3635 ) Cited
Export

EndNote

Ris

BibTeX

Antimony and its compounds are widely used in various manufacturing and semiconducting industries. It presents in the environment as a result of natural process and human activities. The contamination of antimony in the environment is increasingly severe, in recent years, interest in the relative research has grown in abroad. Antimony is nonessential to plants, but can be readily taken up by roots from soils in soluble forms. Furthermore, research was carried out and proved the toxicity of some of ils compounds to biota and human being. In this article, the authors mainly reviewed some researches on the distribution, speciation, toxicological behavior and availability of antimony to flora and biota in the soil and water.

CLC Number: 

[ 1 ] Ren Z F , Qing Z X, Chen Z Y1 World Nonferrous Metals , 2002 ,7 : 23 —25
[ 2 ] Watanabe N , Inoue S , Ito H. Chemosphere , 1999 , 39 (10) :1689 —1698
[ 3 ] Reimann D O. Kurzberich. UOI/539A/AM, 1995
[ 4 ] Velzen D , Langenkamp H , Herb G. Waste Manage. Res. , 1998 ,16 (1) : 32 —40
[ 5 ] Filella M, Belzile N , Chen YW. Earth-Science Reviews , 2002 ,57 : 125 —176
[ 6 ] He M C , Yang J R. The Science of the Total Environment , 1999 ,243/244 : 149 —155
[ 7 ] 何孟常(He M C) , 季海冰(Ji H B) , 赵承易(Zhao C Y) 等.北京师范大学学报(自然科学版) (Journal of Beijing Normal University , Natural Science) , 2002 , 38 (3) : 417 —420
[ 8 ] Lintschinger J , Koch I , Serves S , et al . Fresenius’J . Anal .Chem. , 1997 , 359 : 481 —491
[ 9 ] 何孟常(He M C) , 云影(Yun Y) . 环境化学( Environmental Chemistry) , 2003 , 22 (2) : 127 —131
[10] Zheng J . Ohata M. Furuta N. Analyst , 2000 , 125 :1025
[11] Krupp E M, Grumping R , Furchtabr U R R , et al . Fresenius’J .Anal . Chem. 1996 , 354 : 546 —549
[12] Andrewes P , Cullen W R , Polishchuk E. Chemosphere , 2000 ,41 : 1717 —1725
[13] Dodd M, Pergantis S A , Cullen WR , et al . Analyst , 1996 , 121 :223 —228
[14] Feldmann J , Koch L , Cullen W R. Analyst , 1998 , 123 : 815
[15] Deutsche Forschungs Gemeinschalt (DFG) . Analyses of Hazardous Substances in Biological Materials , VCH Weinheim , 1994 , 51
[16] De Wolft F A. British Medical Journal . 1995 , 310 : 1216 —1217
[17] Al-Khawajah A , Larbi E B , Al-Gindan Y, et al . Toxicology ,1992 , 11 : 283 —288
[18] Poon R. Toxicology , 1998 , 36 : 21 —35
[19] Jones R D. Occupational and Environmental Medicine , 1994 , 51 :772 —776
[20] Huang H , Shu S C , Shih J H , et al . Toxicology , 1998 , 129 :113 —123
[21] Poon R , Chu I. Toxicology , 1998 , 36 : 21 —35
[22] Cutter G A , Cutter L S. Mar. Chem. , 1998 , 61 : 25 —36
[23] Takayanagi K. Toxicol . , 2001 , 66 : 808 —813
[24] Parisis N E. Toxicological and Environmental Chemistry , 1992 ,36 : 205 —216
[25] Baroni F , Boscagli A , Protano G, et al . Environmental Pollution ,2000 , 109 : 147 —352
[26] Hammel W, Debus R , Steubing L. Chemosphere. 2000 , 41 :1791 —1798
[27] Crommentuijn T, Polder M D , van de Plasche E J . RIVM Report No. 601 501 001 , National Institute of Public Health and the En vironment , Bilthoven , The Netherlands. 1997
[28] Thron V , Bedeutung Von. Antimony in : Die Trinkwassereer or Drung , 3rd ed. ( eds. Aurand K, et al . ) . Berlin , Germany :Erich Schmidt . 1991
[29] Council of the European Union (CEU) Council Directive 98/83/EC of 3 November , 1998 on the quality of water intended for human consumption. Official Journal L 330. 05/12/1998. . 32 —54
[30] USEPA. National Primary Drinking in Water Standards. USEPA.Office of Water. Washington DC , USA. Doc. 810-F-94-001 , 1999
[31] California Environmental Protection Agency. Public Health Goal for Antimony in Drinking Water Ⅱ, December 1997

[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[3] Shaopeng Tian, Huaping Ren, Mingshu Chen, Zongcheng Miao, Yisheng Tan. The Crucial Role of Cation Distribution in Non-Stoichiometric Spinel-Structure Zn-Cr Catalysts for Isobutanol Synthesis from Syngas [J]. Progress in Chemistry, 2022, 34(1): 155-167.
[4] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[5] Anen He, Jiaojiao Xie, Chungang Yuan. Heavy Metal Speciation Analysis and Distribution Characteristics in Atmospheric Particulate Matters [J]. Progress in Chemistry, 2021, 33(9): 1627-1647.
[6] Yuyang Lei, Fangfang Li, Jie Ouyang, Minjie Li, Lianghong Guo. Environmental Distribution Characteristics and Source Analysis of Antibiotics in Zhejiang Area [J]. Progress in Chemistry, 2021, 33(8): 1414-1425.
[7] Yuzhu Zhang, Jing Zhan, Qian S. Liu, Qunfang Zhou, Guibin Jiang. Neurotoxicity Induced by Atmospheric Fine Particulate Matters and the Underlying Molecular Mechanism [J]. Progress in Chemistry, 2021, 33(5): 713-725.
[8] Laijin Zhong, Zhijie Tang, Xin Hu, Hongzhen Lian. Advances of In Vitro Inhalation Bioaccessibility for the Contaminants in Atmospheric Particulate Matters [J]. Progress in Chemistry, 2021, 33(10): 1766-1779.
[9] Qiang Li, Kun Lin, Xianran Xing. Local Structure Determination Based on Total Scattering and Condensed Matter [J]. Progress in Chemistry, 2020, 32(8): 1219-1230.
[10] Zhenyu Huang, Zhengkai Tu. Local Current Density Distribution of Proton Exchange Membrane Fuel Cell and Its Research Prospects [J]. Progress in Chemistry, 2020, 32(7): 943-949.
[11] Bingjie Zhang, Qian S. Liu, Qunfang Zhou, Jianqing Zhang, Guibin Jiang. Neurotoxicological Effects of Nanosilver [J]. Progress in Chemistry, 2018, 30(9): 1392-1402.
[12] Junli Wang, Yaling Wang, Jingxia Zheng, Shiping Yu, Yongzhen Yang, Xuguang Liu. Mechanism, Tuning and Application of Excitation-Dependent Fluorescence Property in Carbon Dots [J]. Progress in Chemistry, 2018, 30(8): 1186-1201.
[13] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[14] Yawei Wang, Ying Wang, Guibin Jiang. Analytical Methods, Environmental Pollutions and Toxicity of Short Chain Chlorinated Paraffins [J]. Progress in Chemistry, 2017, 29(9): 919-929.
[15] Han Donglin, Qi Hongzhao, Zhao Jin, Long Lixia, Ren Yu, Yuan Xubo. Enhancement of Intra-Tumor Penetration and Distribution of Nano-Drug Carriers [J]. Progress in Chemistry, 2016, 28(9): 1397-1405.