中文
Announcement
More
Progress in Chemistry 2003, Vol. 15 Issue (05): 361- Previous Articles   Next Articles

• Review •

Progress in Generation of Fine Particles Using Supercriticai Fluid Precipitation

He Wenzhi**1,2;Jiang Zhaohua1;Suo Quanling2   

  1. (1.Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150006, China; 2. School of Chemical Engineering, Inner Mongolia Polytechnic University, Hohhot 010062, China)
  • Received: Revised: Online: Published:
  • Contact: He Wenzhi
PDF ( 1868 ) Cited
Export

EndNote

Ris

BibTeX

Supercritical fluid precipitation (SFP) technologies, such as RESS and SAS, are novel micronization processes having promising applications in various fields such as inorganic chemistry, organic chemistry and Pharmaceuticals. RESS consists of saturating a supercritical fluid (SF) with the substrate (s), then depressurizing the solution through a nozzle into a low-pressure chamber to cause an extremely rapid nucleation of the substrate (s) in the form of very small particles. SAS consists of decreasing the solvent powder of a liquid solvent in which the substrate is dissolved by saturating it with a SF, resulting in the substrate precipitation or recrystallization. Based on RESS and SAS, some improved SFP technologies, such as AESE, SEDS and SAS-EM have been developed to obtain smaller particles. AESE process involves spraying the solution through a nozzle as fine droplets into SF anti-solvent. SEDS, an improvement of ASES, consists of using a nozzle with two coaxial passages to achieve smaller droplets and intense mixing of SF and solution for increased transfer rates. SAS-EM, a modification of SAS, depends on deflecting the solution jet by a surface vibrating at an ultrasonic frequency that atomizes the jet into small micro droplets. A sintered porous plate or 'frit' nozzle, which could be manufactured more easily and was unlikely to be plugged due to blockage by the presence of a single particle in comparison with capillary nozzles, was used in RESS process. Specialized nozzles are used in AESE to generate and focus the preferred high frequency sonic waves that have been shown to maximize the production of extremely small droplets in the precipitation zone, leading to the precipitation of the very small particles. In this review, the concepts, characteristics and the related application of the SFP processes are introduced, and current issues relating to the SFP processes are addressed.

CLC Number: 

[ 1 ] 朱自强(Zhu Z Q ). 超临界流体技术—— 原理和应用( Supercritical Fluid Technology—— Principle and Application). 北京(Beijing) : 化学工业出版社(Chemical Industry Press) , 2001. 20
[ 2 ] Krukonis V. Paper at Annual Meeting AIChE, San Francisco, November 1984
[ 3 ] Krukkonis V J , Gallagher P M , Coffey M P. U S 5 360 478, 1991
[ 4 ] Jung J , Perrut M. J. Supercritical F luids, 2001, 20:179—219
[ 5 ] Reverchon E, Della P G, Trolio A D, et al. Ind. Eng.Chem. Res. , 1998, 37: 952—958
[ 6 ] Reverchon E, Della P G. Powder Technol. , 1999, 106:23—29
[ 7 ] Matson D W , Petersen R C, Smith R D. J. Material Science, 1987, 22: 1918—1928
[ 8 ] Sun Y P, Guduru R, Lin F, et al. Ind. Eng. Chem.Res. , 2000, 39: 4663—4669
[ 9 ] Pallado P, Benedetti L , Callegaro L. WO 96/29 998, 1996
[ 10 ] Thiering R, Dehghani F, Dillow A , et al. J. Chemical Technology and Biotechnology, 2000, 75: 29—41
[ 11 ] Debenedetti P G. AIChE J. , 1990, 36: 1289—1298
[ 12 ] Reverchon E. J. Supercritical Fluids, 1999, 15: 1—21
[ 13 ] Thies J , Müller B W. European J. of Pharmaceutics and Biopharmaceutics, 1998, 45: 67—74
[ 14 ] Debenedetti P, Tom J W , Yeo S D, et al. J. Controlled Release, 1993, 24: 27—44
[ 15 ] Matsuyama K, Mishima K, Umemoto H, et al. Environ.Sci. Technol. , 2001, 35: 4149—4155
[ 16 ] Yin S, Sato T. Ind. Eng. Chem. Res. , 2000, 39: 4526—4530
[ 17 ] Hong L , Guo J Z, Gao Y, et al. Ind. Eng. Chem. Res. ,2000, 39: 4882—4887
[ 18 ] Heater K J , Tomasko D L. J. Supercritical Fluids, 1999,14: 56—65
[ 19 ] 陈鸿雁(Chen H Y) , 蔡建国(Cai J G) , 邓修等(Deng X).化工学报(J. Chem. Ind. Eng. ) , 2001, 56 (1) : 56—60
[ 20 ] Moneghini M , Kikic I, Voinovich D, et al. International J. of Pharmaceutics, 2001, 222: 129—138
[ 21 ] Young T J , Tohnston K P, M ish ima K, et al. J.Pharmaceutical Sciences, 1999, 88 (6) : 640—649
[ 22 ] Godinas A , Henriksen IB, Krukonis V , et al. WO 99/65 469, 1999
[ 23 ] Gallagher P M , Coffey M P, Krukonis V J. J.Supercritical F luids, 1992, 5: 130—142
[ 24 ] Matsuyama H, Yano H, M ak i T, et al. J. Membrane Science, 2001, 194: 157—163
[ 25 ] Glebov E M , Yuan L , Krish topa L G, et al. Ind. Eng.Chem. Res. , 2001, 40: 4058—4068
[ 26 ] Schimtt W J. U S 253 849, 1988
[ 27 ] Elvassore N , Bertucco A , Caliceti P. Ind. Eng. Chem.Res. , 2001, 40: 795—800
[ 28 ] Elvassore N , Bertucco A , Caliceti P. J. Pharmaceutical Sciences, 2001, 90 (10) : 1628—1636
[ 29 ] Chattopadhyay P, Gup ta R B. Ind. Eng. Chem. Res. ,2000, 39: 2281—2289
[ 30 ] Hanna M , Yo rk P. WO 95/01 221, 1994
[ 31 ] Hanna M , Yo rk P. WO 96/00 610, 1995
[ 32 ] Domingo C, Berends E, Rosmalen G M. J. Supercritical Fluids, 1997, 10: 39—55
[ 33 ] Tom J W , Debenedetti P, Jerome R. J. Supercrit. Fluids,1994, 7: 9—29
[ 34 ] L ele A K, Sh ine A D. A IChE J. , 1992, 38 (5) : 742—752
[ 35 ] L ele A K, Sh ine A D. Ind. Eng. Chem. Res. , 1994, 33:1476—1485
[ 36 ] Subramaniam B, Saim S, Rajewski R A , et al. WO97/31 691, 1997
[ 37 ] Subramaniam B, Saim S, Rajewski R A , et al. U S 5 833 891, 1998
[ 38 ] Subramaniam B, Saim S, Rajewski R A , et al. U S 5 874 029, 1999
[ 39 ] Chattopadhyay P, Gup ta R B. Ind. Eng. Chem. Res. ,2001, 40: 3530—3539
[ 40 ] Chattopadhyay P, Gup ta R B. International J. of Pharmaceutics, 2001, 228: 19—31
[ 41 ] Weber M , Russell L M , Debenedetti P G. J. Supercritical Fluids, 2002, 23: 65—80
[ 42 ] Türk M , Hils P, Helfgen B, et al. J. Supercritical Fluids,2002, 22: 75—84
[ 43 ] Thiering R, Dehghani F, Foster N R. J. Supercrit.Fluids, 2001, 21: 159—177

[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[5] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[6] Li Fu, Huaiwei Zhang, Weiting Ye, Chen Ye, Cheng-Te Lin. Solid-State Electroanalytical Chemistry and Its Application in Plant Analysis [J]. Progress in Chemistry, 2021, 33(8): 1440-1449.
[7] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[8] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[9] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
[10] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[11] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[12] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[13] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[14] Wenhao Wu, Wen Lei, Liqiong Wang, Sen Wang, Haijun Zhang. Preparation of Single Atom Catalysts [J]. Progress in Chemistry, 2020, 32(1): 23-32.
[15] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.