中文
Announcement
More
Progress in Chemistry 2003, Vol. 15 Issue (02): 81-   Next Articles

• Review •

ploring New Route for Establishing the Theory of Catalysis on the Basis of Non-Equilibrium Thermodynamics

Wu Yue*;Yang Xiangguang   

  1. (Changchun Institute of Applied Chemistry,Chinese Academy of Sciences, Changchun 130022, China)
  • Received: Revised: Online: Published:
  • Contact: Wu Yue
PDF ( 2270 ) Cited
Export

EndNote

Ris

BibTeX

Conventional equilibrium thermodynamics has long been recognized as one of the most important cornerstone of the theory of heterogeneous catalysis, but it is not suited quite well to generalize the state and behavior of operating catalysts. It is principally to see that there are non-equilibrium processes involved. The catalytic system exits always in thermodynamically non-equilibrium state under which the state and behavior of the system depend upon both kinetics and thermodynamics. It is argued that the most general useful relation, relating kinetics and thermodynamics, is not the De Bonder inequality Ar≥,but the new equation of De Donde In r/r =A/R7\ What matter is not so much for theformal thermodynamic coupling between simultaneous overall reactions, but the kinetic coupling between the elementary processes of a catalytic sequence . By introducing the notion of chemical potential into the analysis of dynamic chemical phenomena, a joint kinetic-thermodynanmic approach allows one to analysis both catalytic reaction and non-equilibrium state of catalyst. Perspectively, the role of non-equilibrium thermodynamics in creating physic-chemical background for heterogeneous catalysis is in fact much more embracing and interesting than that given by conventional equilibrium thermodynamics.

CLC Number: 

[ 1 ] 吴越. 催化化学(上下册). 北京: 科学出版社. 1998
[ 2 ] 李如生. 非平衡态热力学和耗散结构. 北京: 清华大学出版社. 1986
[ 3 ] Parmon V N. Catal. Today, 1999, 51: 435—456
[ 4 ] prigogine I. Introduction to Thermodynamics of Irreversible Processes 3rd Ed. New York: Interscience Pub.1957
[ 5 ] Imbih l R, Ertl G. Chem. Rev. 1995, 95 (3) : 697
[ 6 ] Shitz E, Hartmann N , Kerrekidis Y, Imbihl R. Faraday Discuss, 1996, 105: 47
[ 7 ] Mertens F, Schwegmann S. Imbihl R. J. Chem. Phys. ,1997, 106: 4319
[ 8 ] Khrustova N , MichailovA S, Imbihl R. J. Chem. Phys. ,1997, 107: 2096
[ 9 ] Donder Th De. L ’Affinite. Paris: Gauther Villars, 1927,43
[ 10 ] Prigogine I, Defay R. Chemical Thermodynamics. London: Longman Green. 1954, 38—42, 262
[ 11 ] Семенов Н Н. О Некоторых пролдемах Хuм КuH. иРеакционнойСпосоR ностиизд. АН, 1958, 415—420
[ 12 ] Dowden D A. Catalysisvo l 3. (eds. Kemball C, Dowden D A ) London: the Chemical Society, 1980. 137
[ 13 ] Batist P A , Kapteijns C J , Plippens B C, Schuit G C A. J.Catal. , 1967, 7: 33—49
[ 14 ] Boudart M. Ind. Eng. Chem. Fundamentals, 1986, 25 (1) :70—92
[ 15 ] Horiuti J , Nakamura T. A dv. Catal. Rel. Subj. , 1967,17: 38
[ 16 ] Temkin M I. Adv. Ctal. Rel. Subj. , 1979, 28: 173—291
[ 17 ] Sormorjai G A. Surface Chemistry and Catalysis. New York: Wiley. 1994
[ 18 ] Kinakarova O V , Yuriiev T M , Kustova G N , Ziborov A B, et al. Kinet. Catal. , 1993, 34: 81
[ 19 ] Nicolis G, Prigogine I. Self-organization in Non Equilibrium System. New York: Wiley. 1971
[ 20 ] ЭRлингВ. ОбрaзованиеструктурприНеобртивныхПроцессах.МOCKBA: u?g. Мир, 1979. 271
[ 21 ] Murry J D. Mathematical Biology. Berlin: Springer 1990
[ 22 ] Glassdorf P, Prigogine I. Thermodynamics Theory & Structure, Stability and Fluctuation. New York: Wiley InterScience. 1971
[ 23 ] Prigogine I. From being to becoming W. H. Freeman and Comp. San Francisco. 1980
[ 24 ] May R M. Stability and complexity in model Ecosystem.Princeton University Press. 1973
[ 25 ] ПисаржевскииЛВ. избранныеТрудывобластиКатализКиев.изаАНУССР. 1955 С218231, 66—80
[ 26 ] Ertl G, Norton P, Rustig R J. Phys. Rev. Lett. , 1982,49 (2)
[ 27 ] Keverekidis L , Schimidt L P, Aris R. U зь. AHcccp.Cep. Xu M. 1984, 32 (1) : 151—167
[ 28 ] БарелкоВВ, КурьнгкоИИ, МержанновИГД. АНСССР1976, 229 (4) : 898—701; Кин. иКат. 1976, 17 (3) : 683—690
[ 29 ] Cox M P, Ertl G, Inbihl R. Phys. Rev. Lett. , 1985, 54(15)
[ 30 ] Eiswirth M , W etzel M P, et al. J. Chem. Phys. , 1989,90 (1) : 510—521
[ 31 ] Davis W. Phil. Mag. , 1974, 17 (2) : 283—290
[ 32 ] Всесоюзн Т Р. Конф. поМеханизму ГетрегенноКаталич.PeaкцийМосква9213 ? 1970 Иnрnеринт
[ 33 ] OKunev A G, Parmon V N. Kinet. Catal. , 1997, 38: 544
[ 34 ] Mills I, Critas T, Homann K, Kallay N , Kuchisu K.Quantities Units and Symbols in Physical Chemistry. Oxford: Blackwell. 1993, 46
[ 35 ] Van-Rysselberghe P. J. Chem. Soc. , 1958, 29: 640
[ 36 ] Wei J. J. Chem. Phys. , 1962, 36: 1578
[ 37 ] Yelokhim V I, Yablensky G S. in Perspective in Catalysis( eds. Thomas T M , Zamarasb K I). Oxford: IOPAC/Blackwell, 1991. 191

[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.