中文
Announcement
More
Progress in Chemistry 2002, Vol. 14 Issue (06): 409-   Next Articles

• Review •

Recent Progress in Supercritical Water Theoretical Research

Chen Jinyang;Zheng Haifei;Zeng Yishan**   

  1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guanzhou 510640, China; Department of Geology, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: Zeng Yishan
PDF ( 2073 ) Cited
Export

EndNote

Ris

BibTeX

Simulative computation, Raman spectroscopy, NMR and diffraction are the important methods to study the static structures of supercritical water. The results show that the hydrogen bond of supercritical water near critical region is only 29% of that of ambient condition. Microwave spectrum, NMR and quasielastic incoherent neutron scattering methods are adopted to study the dynamics of supercritical water. The results indicate that the time of rearrangement decreases greatly near critical region, which account for the increase of reaction rate in supercritical water. This is the basis for study of the mechanism of reaction rate in supercritical water. The microwave spectrum method is not appropriate for supercritical water at high temperature and low density conditons because the period of microwave is longer than the period of rearrangement. The experimental and simulative studies of mechanism and dynamics of hydrogen bond in supercritical water are the main research areas in the near future.

CLC Number: 

[ 1 ] Savage P E, Gopalan S, Mizan T I, et al. AIChE J. ,1995, 41 (7) : 1723—1778
[ 2 ] Shaw R W , Brill T B, Clifford A A , et al. Chem. Eng.News, 1991, 69 (51) : 26—39
[ 3 ] Nakahare M , Tennoh T, Wakai C, et al. Chem. Lett. ,1997, 302 (2) : 163—166
[ 4 ] Yao J , Evilia R F. J. Am. Chem. Soc. , 1994, 116 (25) :11229—11233
[ 5 ] Seewald L S. Nature, 1994, 370 (6487) : 285—287
[ 6 ] Mango F D, Hightower J W , James A T. Nature, 1994,368 (6471) : 536—538
[ 7 ] 翁克难(Weng K N ) , 肖万生(Xiao W S) , 张惠之(Zhang H Z) , 等. 高压物理学报(Chinese J. High Pressure Physics) , 1996, 10 (4) : 241—244
[ 8 ] Weng K N , Wang B S, Xiao W S, et al. Chinese J. Geo-chemistry, 1999, 18 (2) : 115—120
[ 9 ] Nobuyuki M , Chihiro W , Masaru N. J. Chem. Phys. ,1999, 110 (16) : 8000—8011
[ 10 ] Chialvo A , Cummings P T. J. Chem. Phys. , 1994, 101(5) : 4466—4469
[ 11 ] Kalinichev A G, Bass J D. Chem Phys. Lett. , 1994, 231(223) : 301—307
[ 12 ] Miran T I, Savage R E, Ziff R M. J. Phys. Chem. ,1994, 98 (49) : 13067—13076
[ 13 ] Cummings P T, Cochran H D, Samonson J M , et al. J.Chem. Phys. , 1991, 94 (8) : 5606—5621
[ 14 ] Guissani Y, Guillot B. J. Chem. Phys. , 1993, 98 (10) :8221—8235
[ 15 ] Berendsen H J C, Grigera J R, Straatsma T P. J. Phys.Chem. , 1987, 91 (24) : 6269—6271
[ 16 ] Shostak S L , Ebenberg W L , Muenter J S. J. Chem.Phys. , 1991, 94 (9) : 5875—5882
[ 17 ] Whalley E. Chem. Phys. Lett. , 1978, 53 (3) : 449—451
[ 18 ] Yoshii N , Ysohies H, Miura S, et al. J. Chem. Phys. ,1998, 109 (12) : 4873—4884
[ 19 ] Nobuyuki M , Chihiro W , Masaru N. Phys. Rev. Lett. ,1997, 78 (13) : 2573—2576
[ 20 ] Nobuyuki M , Chihiro W , Masaru N. J. Chem. Phys. ,1997, 107 (21) : 9133—9140
[ 21 ] John D F, J ean D, Bjo rn M. Chem. Geo l. , 1993, 106(1) : 9—26
[ 22 ] David M C, Gerald M K. J. Chem. Phys. , 1998, 108 (7) :2669—2675
[ 23 ] Walrafen G E, Fisher M R, Hokmabadi M S, et al. J.Chem. Phys. , 1986, 85 (12) : 6970—6982
[ 24 ] Ikushima Y, Hatakeda K, Saito N. J. Chem. Phys. ,1998, 108 (14) : 5855—5860
[ 25 ] Hoffmann M M , Conradi S. J. Am. Chem. Soc. , 1997,119 (16) : 3811—3817
[ 26 ] Walrafen G E, Yang W H, Chu Y C. J. Phys. Chem. B,1999, 103 (8) : 1332—1338
[ 27 ] Walrafen G E, Chu Y C, Piermarini G J. J. Phys.Chem. , 1996, 100 (24) : 10363—10372
[ 28 ] Tsukahara T, Harada M , Ikeda Y, et al. Chem. Lett. ,2000, 340 (4) : 420—421
[ 29 ] Postorino P, Tromp R H, Ricel M A , et al. Nature,1993, 366 (6456) : 668—670
[ 30 ] Soper A K, Bruni F, Ricci M A. J. Chem. Phys. , 1997,106 (1) : 247—254
[ 31 ] Tromp R H, Postorino P, Neilson G W , et al. J. Chem.Phys. , 1994, 107 (7) : 6210—6215
[ 32 ] Yamanaka K, Yamaguchi T, Wakita H. J. Chem. Phys. ,1994, 101 (11) : 9830—9836
[ 33 ] Gorbaty Y E, Kalinichev A G. J. Phys. Chem. , 1995, 99(15) : 5336—5340
[ 34 ] Jonas J. Science, 1982, 216 (4551) : 1179—1184
[ 35 ] Okada K, Imashuku Y, Yao M. J. Chem. Phys. , 1997,107 (22) : 9302—9311
[ 36 ] Okada K, Yao Y, Hiejima Y, et al. J. Chem. Phys. ,1999, 110 (6) : 3026—3036
[ 37 ] Bursulaya B D, Kim H J. J. Chem. Phys. , 1999, 110(19) : 9656—9665
[ 38 ] Skaf M S, Laria D. J. Chem. Phys. , 2000, 113 ( 9 ) :3499—3502
[ 39 ] Yang C N , Kim H J. J. Chem. Phys. , 2000, 113 (15) :6025—6028
[ 40 ] Bursulaya B D, Kim H J. J. Chem. Phys. , 1999, 110(19) : 9646—9655
[ 41 ] Nubuyuki M , Nakao N , Nakahara M. J. Chem. Phys. ,2001, 114 (9) : 4107—4115
[ 42 ] Tassaing T, Bellissent F M C. J. Chem. Phys. , 2000, 113(8) : 3332—3337

[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[6] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[7] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[8] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[9] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[10] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[11] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[12] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[13] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[14] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[15] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.