中文
Announcement
More
Progress in Chemistry 2002, Vol. 14 Issue (05): 391- Previous Articles   Next Articles

• Review •

Soluble Polymer-supported Reagents and Catalysts

Guo Hongchao;Shi Xueyan;Wang Min*   

  1. Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
  • Received: Revised: Online: Published:
  • Contact: Wang Min
PDF ( 1316 ) Cited
Export

EndNote

Ris

BibTeX

Soluble polymer-supported reagents and catalysts in the field of liquid-phase chemistry appeared during last fifteen years and their applications have been reviewed.

CLC Number: 

[ 1 ] Thompson L A , Ellman J A. Chem. Rev. , 1996, 96:555—600
[ 2 ] Short K M , Ching B W , Mjalli A M M. Tetrahedron,1997, 53: 6653—6679
[ 3 ] Booth S, Hermkens P H H, Ottenheijm H C J , et al. Tetrahedron, 1998, 54: 15385—15443
[ 4 ] James I W. Tetrahedron, 1999, 55: 4855—4946
[ 5 ] Han H, Wolfe M M , Brenner S, Janda K D. Proc. Natl.Acad. Sci. U. S. A. , 1995, 2: 6419—6423
[ 6 ] Gravert D J , Janda K D. Chem. Rev. , 1997, 97: 489—509
[ 7 ] Geckeler K E. Adv. Polym. Sci. , 1995, 121: 31—42
[ 8 ] Mutter M , Hagenmaier H, Bayer E. Angew. Chem. , Int.Ed. Engl. , 1971, 10: 811—812
[ 9 ] Bayer E, Mutter M. Nature, 1972, 237: 512—513
[ 10 ] Wentworth P, Janda K D. Chem. Commun. , 1999,1917—1924
[ 11 ] Bergbreiter D E. Chemtech, 1987, November, 686—690
[ 12 ] Harris J M. In Poly ( Ethylene Glycol ) Chemistry:Biotechnical and Biomedical Applications. ( ed. Harris J M ) , New York: Plenum Press, 1992. Chapter 1
[ 13 ] 严瑞 ( Yan R X ). 水溶性高分子( Soluble Macromolecule). 北京: 化学工业出版社, 1998. 223—231
[ 14 ] Han H, Janda K D. J. Am. Chem. Soc. , 1996, 118:7632—7633
[ 15 ] Bolm C, Gerlach A. Angew. Chem. , Int. Ed. Engl. ,1997, 36: 741—743
[ 16 ] Han H, Janda K D. Tetrahedron Lett. , 1997, 38: 1527—1530
[ 17 ] Han H, Janda K D. Angew. Chem. , Int. Ed. Engl. ,1997, 36: 1731—1733
[ 18 ] Wipf P, Venkatraman S. Tetrahedron Lett. , 1996, 37:4659—4662
[ 19 ] Harris J M , Liu Y, Chai S, et al. J. Org. Chem. , 1998,63: 2407—2409
[ 20 ] Kononov L O , Ito Y, Ogawa T. Tetrahedron Lett. ,1997, 38: 1599—1602
[ 21 ] Hori M , Janda K D. J. Org. Chem. , 1998, 63: 889—894
[ 22 ] Grinberg S, Shaubi E. Tetrahedron, 1991, 47: 2895—2902
[ 23 ] Bergbreiter D E, Chandran R. J. Org. Chem. , 1986, 51:4754—4760
[ 24 ] Bergbreiter D E, Weatherford D A. J. Org. Chem. ,1989, 54: 2726—2730
[ 25 ] Bergbreiter D E, Chandran R. J. Am. Chem. Soc. ,1987, 109: 174—179
[ 26 ] Phelps J C, Bergbreiter D E. Tetrahedron Lett. , 1989,30: 3915—3918
[ 27 ] Bergbreiter D E, Morvant M , Chen B. Tetrahedron Lett. , 1991, 32: 2731—2734
[ 28 ] Bergbreiter D E, Walker S A. J. Org. Chem. , 1989, 54:5138—5141
[ 29 ] Doyle M P, Eismont M Y. J. O rg. Chem. , 1992, 57:6103—6105
[ 30 ] Bayer E, Schurig V. Angew. Chem. , Int. Ed. Engl. ,1975, 14: 493—494
[ 31 ] Bayer E, Schurig V. Chemtech, 1976, M arch, 212—214
[ 32 ] Enholm E J , Gallagher M E, Moran K M , et al. Organic Lett. , 1999, 1: 689—691
[ 33 ] Keller F, Weinmann H, Schurig V. Chem. Ber. /Recueil,1997, 130: 879—885
[ 34 ] Felder M , Giffels G, Wandrey C. Tetrahedron: Asymmetry, 1997, 8: 1975—1977
[ 35 ] Bergbreiter D E, Zhang L , Mariaghanam V M. J. Am.Chem. Soc. , 1993, 115: a9295—9296
[ 36 ] Bergbreiter D E, Case B L , Liu Y, et al. Macromolecules,1998, 31: 6053—6062
[ 37 ] Kobayashi S, Nagayama S, Busujima T. Tetrahedron Lett. , 1996, 37: 9221—9224
[ 38 ] Kobayashi S, Nagayama S. J. Am. Chem. Soc. , 1996,118: 8977—8978
[ 39 ] Kobayashi S, Nagayama S. Synlett, 1997, 653—654
[ 40 ] Canali L , Karjalainen J K, Sherrington D C, et al. Chem.Commun. , 1997, 123—124
[ 41 ] Gravert D J , Datta A , J r. P W , et al. J. Am. Chem.Soc. , 1998, 120: 9481—9495
[ 42 ] Gravert D J , J anda K D. Tetrahedron Lett. , 1998, 39:1513—1516
[ 43 ] Benaglia M , Annunziata R, Cinquini M , et al. J. Org.Chem. , 1998, 63: 8628—8629

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[12] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[13] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[14] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[15] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.