中文
Announcement
More
Progress in Chemistry 2002, Vol. 14 Issue (01): 47- Previous Articles   Next Articles

• Review •

The Research Progress of Ni-containing Enzymes and Model Compounds

Dai Yan;Cheng Peng   

  1. Department of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
PDF ( 1792 ) Cited
Export

EndNote

Ris

BibTeX

The known Ni-containing enzymes include urease, hydrogenase, carbon monoxide dehydrogenases/acetyl coenzyme A synthases, methyl coenzyme M reductases and superoxide dimutuses. The knowledge of the structure, function and model compounds of the Ni-containing enzymes is briefly overviewed in this paper.

CLC Number: 

[ 1 ] Lancaster B J R. The Bioinorganic Chemistry of Nickel. Florida: VCH Publishers, 1988
[ 2 ] Hausinger R P. Biochemistry of Nickle, New York: Plenum,1993
[ 3 ] Mobley H L T, Island M D, Hausinger R P. Microbiolyical Reviews, 1995, 59: 451
[ 4 ] Gabri E, Carr M B, Hausinger R P, et al. Science, 1997, 268:998
[ 5 ] Person M A , Michel L O , Hausinger R P, et al. Biochemistry,1997, 36: 8164
[ 6 ] Maroneg M J , Daridson G, Allan C B, et al. Struct. Bonding,1998, 92: 1
[ 7 ] Wages H E, Taft K L , Lippard S J. Inorg. Chem. , 1993, 32:4985
[ 8 ] Stemmler A J , Kampf J W , Kirk M L , et al. J. Am. Chem.Soc. , 1995, 117: 6368
[ 9 ] Frey M. Struct. Bonding, 1998, 90: 97
[ 10 ] Volbeda A , Charon M H, Piras C, et al. J. Am. Chem.Soc. , 1996, 118: 12989
[ 11 ] Happe R P, Roseboom W , Pierik A , et al. Nature, 1997,385: 126
[ 12 ] Delecey A L , Hatchikian E C, Volbeda A , et al. J. Am.Chem. Soc. , 1997, 119: 7181
[ 13 ] Darensbourg D J , Reibenspies J H, Lai C H, et al. J. Am.Chem. Soc. , 1997, 119: 7903
[ 14 ] Lai C H, Lee W Z, Miller M L , et al. J. Am. Chem. Soc. ,1998, 120: 10103
[ 15 ] Osterloh, Saakk F, Haase D, et al. Chem. Commum. ,1996, 777
[ 16 ] Sellmann D, Geipel F, Moll M , et al. Angew. Chem. Int.Ed. , 2000, 39: 561
[ 17 ] Sun Y J , Cheng P, Yan S P, et al. Inorg. Chem. Commun. ,2000, 3: 289
[ 18 ] Ferry J G. Annu. Rev. Micobiol. , 1995, 49: 305
[ 19 ] Shin W , Lindahl P A. J. Am. Chem. Soc. , 1992, 114: 9718
[ 20 ] Kumar M , Lu W P. Liu L , et al. J. Am. Chem. Soc. , 1993,115, 11: 646
[ 21 ] Anderson M E, DeRose V J , Hoffman B M , et al. J. Am. .Chem. Soc. , 1993, 115: 12204
[ 22 ] Anderson M E, Lindah l P A , Biochemistry, 1994, 33: 8702
[ 23 ] Stephens P J , McKenna M C, Ensign S A , et al. J. Biol.Chem, 1989, 264: 16347
[ 24 ] Seravalli J , Kumar M , Lu W P, et al. Biochemistry, 1995,34: 7879
[ 25 ] Grahame D A , DeMoll E. J. Biol. Chem. , 1996, 271: 352
[ 26 ] Xia J , Dong J , Wang S, et al. J. Am. Chem. Soc. , 1995,117: 7065
[ 27 ] Xia J , Lindahl P A. J. Am. Chem. Soc. , 1996, 118: 483
[ 28 ] Setzke E, Hedderich R, Heiden S, et al. Eur. J. Bio.Chem. , 1994, 220: 139
[ 29 ] DiMarco A A , Bobik T A , Wolfe R S. Ann. Rev. Biochem. ,1990, 59: 355
[ 30 ] Won H, Olson K D, Summers M F, et al. Comments. Inorg.Chem. , 1993, 15: 1
[ 31 ] Ermler U , Grabarse W , Shima S, et al. Science, 1996, 278:1457
[ 32 ] Pfaltz A , Livingston D A , J aun B, et al. Helv. Chim. Acta,1985, 68: 1338
[ 33 ] Keltjens J T, Hermans J M H, Rijsdijk G J F A , et al. Antonie van Leeuwenhoek, 1998, 54: 207
[ 34 ] Farber G, Keller W , Kratky C, et al. Helv. Chim. Acta ,1991, 74: 617
[ 35 ] Won H, Summers M F, Olson K D, et al. J. Am. Chem.Soc. , 1990, 112: 2178
[ 36 ] Won H, Olson K D, Pork J , et al. Bull. Korean. Chem. Soc.1995, 16: 649
[ 37 ] Olson K D, Won H, Wolfe R S, et al. Bull. Korean. Chem.Soc. , 1995, 112: 5884
[ 38 ] Eidsness M K, Sullivan R J , Schwartz J R, et al. J. Am.Chem. Soc. , 1986, 108: 3120
[ 39 ] Shiemke A K, Shelnutt J A , Scott R A. J. Biol. Chem. ,1989, 264, 11: 236
[ 40 ] Shiemke A K, Hamilton C L , Scott R A. J. Biol. Chem. ,1988, 263: 5611
[ 41 ] Furenlid L R, Renner M W , Fajer J. J. Am. Chem. Soc.1990, 112: 8987
[ 42 ] Shiemke A K, Kaplan W A , Hamilton C L , et al. J. Biol.Chem. , 1989, 264: 7276
[ 43 ] Fridovich I. Arch. Biochem. Biophys. , 1986, 247: 1
[ 44 ] Youn H D, Youn H, Lee J W , et al. Arch. Biochem. Biophys. , 1996, 334: 341
[ 45 ] Youn H D, Kon E J , Roe J H, et al. Biochem. J. , 1996,318: 887
[ 46 ] Bal W , D juran M I, Margerum D W , et al. Chem. Commun. , 1994: 1889

[1] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[2] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[3] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[4] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[5] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[6] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[7] Hong-lin Zhu, Wen-ying Li, Ting-ting Li, Michael Baitinger, Juri Grin, Yue-qing Zheng. N-Doped Porous Carbon Supported Transition Metal Single Atomic Catalysts for CO2 Electroreduction Reaction [J]. Progress in Chemistry, 2019, 31(7): 939-953.
[8] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[9] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[10] Zhao Yuan, Zeng Jin, Lin Yingwu. Rational Design of Artificial Hydrolases in Protein Scaffolds [J]. Progress in Chemistry, 2015, 27(8): 1102-1109.
[11] Niu Fanfan, Nie Changjun, Chen Yong, Sun Xiaoling. Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins [J]. Progress in Chemistry, 2014, 26(12): 1942-1961.
[12] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[13] Xie Yingjuan, Wu Zhijiao, Zhang Xiao, Ma Peijun, Piao Lingyu. Synthesis and Photocatalytic Mechanisms of the Mixed-Phase TiO2 Photocatalysts [J]. Progress in Chemistry, 2014, 26(07): 1120-1131.
[14] Zhang Qian, Zhou Ying, Zhang Zhao, He Yun, Chen Yongdong, Lin Yuanhua. Plasmonic Photocatalyst [J]. Progress in Chemistry, 2013, 25(12): 2020-2027.
[15] Bian Yinghui, Dong Xujing, Zhu Lijun, Zhou Yulu, Xiang Yuzhi, Xia Daohong. Supramolecular Interaction of Petroleum Components and Model Compounds [J]. Progress in Chemistry, 2013, 25(08): 1260-1271.