中文
Announcement
More
Progress in Chemistry 2001, Vol. 13 Issue (05): 376- Previous Articles   Next Articles

• Review •

Review on Catalysis Mechanism of Methane Monooxygenase

Chen Jianbo;Xia Chungu;Xin Jiaying;Cui Junru;Li Shuben   

  1. State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences, Lanzhou 730000, China
  • Received: Revised: Online: Published:
PDF ( 2216 ) Cited
Export

EndNote

Ris

BibTeX

This paper presented the new results on catalysis reaction mechanism of methanemonooxy genase in recent years. Activation of the stable C—H bond of methane is thought to occur via either a radical rebound mechanism or a concerted in sertion of an oxygen atom. The studies using radical clock and quantum chemical calculations showed that there was not a consistent mechanism to clarify the reaction courses of methane monooxygenase. The type of mechanism may depend on source of methane monooxygenase or other factors. The spectro scopic analysis on the intermediates of methane monooxygenase accelerated the mechanism development of studies on methane monooxygenase.

CLC Number: 

[ 1 ] Wallar B J , Lipscomb J D. Chem. Rev. , 1996, 96: 2625—2657
[ 2 ] Valentine A M , Lippard S J. J. Chem. Soc. Dalton Trans.1997, 3925—3931
[ 3 ] Lipscomb J D. Annu. Rev. Microbiol. , 1994, 48: 371—399
[ 4 ] Lontoh S , DiSpirito A A , Semrau J D. Arch. Microbiol. ,1999, 171: 301—308
[ 5 ] Nguyen H H T, Elliott S J , Yip J H K. J. Biol. Chem. , 1998,273: 7957—7966
[ 6 ] Nguyen H H T, Shiemke A K, Jacobs S J. J. Biol. Chem. ,1998, 273: 7957—7966
[ 7 ] Tukhvatullin I A , Korshunova L A , Gvozdev R I. Biochemistry (Moscow ) , 1996, 61: 886—891
[ 8 ] Yuan H, Collins M L P, Antholine W E. J. Am. Chem. Soc. ,1997, 119: 5073—5074
[ 9 ] Elliott S J , Randall D W , Britt R D. J. Am. Chem. Soc. , 1998,120: 3247—3248
[ 10 ] Nguyen H H T, Nakagawa K H, Hedman B. J. Am. Chem.Soc. , 1996, 118: 12766—12776
[ 11 ] Feig A L , Lippard S J. Chem. Rev. , 1994, 94: 759—805
[ 12 ] Liu Y, Nesheim J C, L ee S K. J. Bio l. Chem. , 1995, 270:24662—24665
[ 13 ] Lee S K, Lipscomb J D. Biochem. , 1999, 38: 4423—4432
[ 14 ] Liu K E, Valentine A M , Lippard S J. J. Am. Chem. Soc. ,1997, 119: 11134
[ 15 ] Liu K E, Valentine A M , Salifoglou A. J. Am. Chem. Soc. ,1995, 117: 10174—10185
[ 16 ] Liu K E, Wang D L , Huynh B H. J. Am. Chem. Soc. , 1995,116: 7465—7466
[ 17 ] Valentine A M , Stahi S S, Lippard S J. J. Am. Chem. Soc. ,1999, 121: 3876—3887
[ 18 ] Lee S K, Fox B G, Munck E. J. Am. Chem. Soc. , 1993, 115:6450—6451
[ 19 ] Shu L J , Nesheim J C, Que L. Science, 1997, 275: 515—518
[ 20 ] Lee S K, Nesheim J C, Lipscomb J D. J. Biol. Chem. , 1993,268: 21569—21577
[ 21 ] Brunold T C, Tamura N , Kitajima N. J. Am. Chem. Soc. ,1998, 120: 5674—5690
[ 22 ] Shteinman A A. Russ. Chem. Bull. , 1995, 44: 975—984
[ 23 ] Shteinman A A. FEBS Lett. , 1995, 44: 975—984
[ 24 ] Yoshizawa K, Hoffmann R. Inorg. Chem. , 1996, 35: 2409—2410
[ 25 ] Yoshizawa K, Yamabe T, Hoffmann R. N ew J. Chem. ,1997, 21: 151—161
[ 26 ] Yoshizawa K, Ohta T, Yamabe T. J. Am. Chem. Soc. , 1997,119: 12311—12321
[ 27 ] Siegbahn P E M. Inorg. Chem. , 1999, 38: 2880—2889
[ 28 ] Siegbahn P E M , Crabtree R H. J. Am. Chem. Soc. , 1997,119: 3103—3113
[ 29 ] Ruzicka F, Huang D S, Donnelly M I. Biochemistry, 1990,29: 1696—1700
[ 30 ] Priestley N D, Floss H G, Froland W A. J. Am. Chem. Soc. ,1992, 114: 7561—7562
[ 31 ] Valentine A M , Wilkinson B, Liu K E. J. Am. Chem. Soc. ,1997, 119: 1818—1827
[ 32 ] Jin Y, Lip scomb J D. Biochemistry, 1999, 38: 6178—6186
[ 33 ] Liu K E, Johnson C C, Newcomb M. J. Am. Chem. Soc. ,1993, 115: 939—947
[ 34 ] Valentine A M , LeTadicBiadatti M I, Toy P H. J. Biol.Chem. , 1999, 274: 10771—10776
[ 35 ] Basch H, Mogi K, Musaev D G. J. Am. Chem. Soc. , 1999,121: 7249—7256
[ 36 ] Nesheim J C, Lipscomb J D. Biochemistry, 1996, 35: 10240—10247
[ 37 ] 宁治中(Ning Z Z) , 缪德埙(Miao D X) , 易淑云(Yi S Y) , 李树本(Li S B ) , 微生物学报(Acta Microbiologica Sinica) ,1990, 17: 283—286
[ 38 ] 尉迟力(Yu C L ) , 缪德埙(Miao D X) , 李树本(Li S B) , 合成化学(Chinese Journal of Synthetic Chem istry ) , 1993, 1:313—319
[ 39 ] 高灿柱(Gao C Z) , 李树本(Li S B) , 分子催化(Journal of Molecular Catalysis) , 1990, 4: 291—297
[ 40 ] 高灿柱(Gao C Z) , 李树本(Li S B) 分子催化(Journal of Molecular Catalysis) , 1991, 5: 227—232
[ 41 ] 沈润南(Shen R N ) , 尉迟力(Yu C L ) , 马清泉(Ma Q Q ) , 李树本(Li S B). 生物化学杂志(Chinese Biochemical Journal) ,1997, 13: 337—343
[ 42 ] Shen R N , Yu C L , Ma Q Q , Li S B. Arch. Biochem. Biophy. , 1997, 345: 223—229

[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.
[8] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[9] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[10] Benzhan Zhu, Linna Xie, Chen Shen, Huiying Gao, Liya Zhu, Li Mao. Chemiluminescence Generation from Haloaromatic Pollutants:Structure-Activity Relationship, Molecular Mechanism and Potential Applications [J]. Progress in Chemistry, 2017, 29(9): 930-942.
[11] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[12] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[13] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[14] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[15] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.