中文
Announcement
More
Progress in Chemistry 2000, Vol. 12 Issue (03): 268- Previous Articles   Next Articles

• Review •

Recent Advances in the Synthesis of Liquid Hydrocarbon via Fischer-Tropsch Synthesis

Dai Xiaoping;Yu Changchun;Shen Shikong*   

  1. The Lab for Catalytic Conversion of Natural Gas, Petroleum University,Beijing 102200, China
  • Received: Revised: Online: Published:
  • Contact: Shen Shikong
PDF ( 2557 ) Cited
Export

EndNote

Ris

BibTeX

Conversion of natural gas to liquid hydrocarbon (GTL ) via Fischer Tropsch synthesis (FTS) is one of the main trends in the use of natural gas. Some corporations, such as Shell, Sasol, Exxon and Syntroleum , have developed their patent techniques of GTL , respectively. The products from GTL include fuel oil, base oil for lubricant, and other chemicals, which are environmentally friendly due to its lower S, N,metal content and aromatic hydrocarbon. With the developing in syngas manufactu re, catalyst preparation and process design of FTS, GTL compete with the product ion route from crude oil in economy in remote, small ormedium sized gas field. The recent advances in catalysts and processesare reviewed, and the trend of GTL in the future is discussed.It's of great importance to develop the technique in China.

CLC Number: 

[1 ] 加藤顺, 小林博行, 村田义夫著, 金革等译, 碳一化学工业生产技术, 化学工业出版社, 北京, 1990,467—523.
[2 ] Badakhshan, 第十五届世界石油大会文集, 北京, 1997, 10, 665—678.
[3 ] Axelrod M G, Gaffney A M , Sofranko J et al. , Stud. Surf . Sci. Catal. , 1994, 81, 93—101.
[4 ] Jaguar B, 4th International Natural gas Conversion Symposium , FT 21, South Africa, 1995.
[5 ] Chem. Eng. , 1997, 104, 21.
[6 ] Van Wechem V M H, Senden M M G, Stud. Surf . Sci. Catal. , 1994, 81, 43—71.
[7 ] Chem. Eng. , 1997, 104, 39—40.
[8 ] Phodes A K Downstream , Oil & Gas Journal, 1996, 94, 85—86.
[9 ] Oil & Gas Journal, 1997, 95, 20.
[10 ] Ruchenstein E, J. Catal. , 1974, 35, 441—452.
[11 ] Dry M E, The Fischer-Tropsch Synthesis, in Catalysis: Sci. and Tech. , é , (eds J. R. Anderson,M. Boudart) , Springer-verlag, 1981, 160—251.
[12 ] Zhong B, Wang Q , Luo Q Y et al. , China-Jap an Bilateral Symp. on Effective Utilization of Carbon Resources, Guang Zhou, China, 1991, 69.
[13 ] 南照东(Nan Z D ) , 张志新(Zhang Z X) 等, 天然气化工(C1 化学与化工) (Natural Gas Chemical Industry , C1 Chemistry & Chemical Industry ) , 1992, 17 (3) , 24—28.
[14 ] Nosa O E, Charles W , Wojcichoski B W , Appl. Catal. , 1989, 55, 47—64.
[15 ] Hiroyuki I, Eiichi K, Appl. Catal. , 1990, 67, 1—9.
[16 ] Li X G, Zhong B, Peng S et al. , Catal. Lett. , 1994, 23, 245—250.
[17 ] O ’Brien R J , Xu L G, Spicer R Let al. , Catal. Today , 1994, 36, 325—334.
[18 ] Dragomir B B, Lech N , Lang X S, Catal. Today , 1995, 24, 111—119.
[19 ] Ajoy P R, Burtron H D, Catal. Today , 1997, 36, 335—345.
[20 ] Dragomir B B, Snehal A P,Lang X S, Appl. Catal. , 1994, 61, 329—349.
[21 ] Steininger M , Gryglewicz S, Science & Technology , 1994, 47 (3) , 115—116.
[22 ] 沈剑一( Shen J Y ) , 林励吾(Lin L W ) 等, 燃料化学学报(Journal of Fuel Chemistry and Technology ) , 1991, 19 (4) , 289—297.
[23 ] Wang D Z, Cheng X P, Huang Z E et al. , Appl. Catal. , 1991, 77, 109—122.
[24 ] Jager B, R Espinoza, Catal. Today , 1995, 23, 17—28.
[25 ] Inst. Francais DV Petrole. , E P 800 864, 1997.
[26 ] The British Petroleum Co. , CN 1 052 844, 1991.
[27 ] 斯塔特石油公司, CN 1 084 153, 1994.
[28 ] William C B, Kym B A , Charles H M et al. , US 5 545 674, 1996.
[29 ] Enrique I, Stuart L S et al. , J. Catal. , 1995, 153, 108—122.
[30 ] Tatsumi I, Nobuhiko H, Koichi E et al. , Appl. Catal. , 1990, 66, 267—282.
[31 ] Li F, Yoshii K, Yan S et al. , Catal. Today , 1997, 36, 295—304.
[32 ] Bessell S, Appl. Catal. A : General, 1993, 96, 253—268.
[33 ] Saul E C, Richard G C, Graham J H et al. , Appl. Catal. A : General, 1992, 84, 1—15.
[34 ] Enrique I, Stuart L S, Rocco A F et al. , J. Catal. , 1993, 143, 345—368.
[35 ] Bessell S, Stud. Sur. Sci. Catal. (Natural Gas Conversion ê ) , 1994 , 483—486.
[36 ] Rohr F, Holmen A , Barbo K et al. , Stud. Sur. Sci. Catal. (Natural Gas Conversion í , 1998,119, 107—112.
[37 ] Lapidus A , Krylova A , Ratbousky J et al. , Appl. Catal. A : General, 1992, 80, 1—11.
[38 ] Schluz H, Clawys M , Harms S, Stud. Sur. Sci. Catal. (Natural Gas Conversion ì ) , 1994, 107,193—200.
[39 ] Vada S, Kazi A M , Bedu-Addo F K et al. , Stud. Sur. Sci. Catal. (Natural Gas Conversion ê ) ,1994, 443—448.
[40 ] Van Berge P J , Stud. Sur. Sci. Catal. (Natural Gas Conversion ì ) , 1994, 107, 207—212.
[41 ] Klbel H, Ralek M , Catalyst Reviews-Science and Engineering , 1980, 21, 225—274.
[42 ] Yokota K, Hanataka Y, Fujimoto K, Fuel, 1991, 70, 989—994.
[43 ] Oil & Gas Journal, 1998, 96, 71—77.
[44 ] Oil & Gas Journal, 1994, 95, 16—21.
[45 ] Oil & Gas Journal, 1997, 95, 68—72.
[46 ] Hydrocarbon Processing , 1996, 75, 35.

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[5] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[6] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[7] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[8] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[9] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[10] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[11] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[12] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[13] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[14] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[15] Di Pan, Peng Liu, Hongbin Zhang, Yi Tang. Continuous Flow Synthesis of Zeolites [J]. Progress in Chemistry, 2020, 32(7): 873-881.