中文
Announcement
More
Progress in Chemistry 1999, Vol. 11 Issue (04): 403- Previous Articles   Next Articles

• Review •

Biology Functions of Nucleoprotein and Synthesis, Applications of Nucleopeptide

Tian Xiaobing;Min Jimei;Zhang Lihe   

  1. National Research Laboratory of Natural and Biomimetic Drugs, Beijing Medical University, Beijing 10083, China
  • Received: Revised: Online: Published:
  • Contact: Zhang Lihe
PDF ( 1756 ) Cited
Export

EndNote

Ris

BibTeX

Nucleoprotein or nucleopeptide is a class of natural macromolecules in which the protein or peptide cores are combined with DNA or RNA at 3′or 5′end by phosphodiester linkages in their side chain. They exhibit broad biological effects including the proliferation of DNA and RNA and the transcription, interaction, deletion, reformation of DNA etc. Nucleopeptides can be synthesized as the fragments of nucleoprotein at binding position and used as a tool for the investigation of the mechanism of biological effects of nucleoproteins. It will open a way to the search for anticancer and antiviral drugs.

CLC Number: 

[1 ] Robels J , Edroso E P, Grands A , J. Org. Chem. , 1994, 59, 2482—2486.
[2 ] Salas M , Ann. Rev. Biochem. , 1991, 60, 39—71.
[3 ] Blanco L , Lazaro J M , de Vaga M et al. , Proc. Natl. Acad. Sci. USA , 1994, 91, 12198—12202.
[4 ] Serrano M , Salas M , Hermoso J M , Science, 1990, 248, 1012—1016.
[5 ] Blanco L , Salas M , Proc. Natl. Acad. Sci. USA , 1984, 81, 5325—5329.
[6 ] Hermoso J M , Mendez E, Soriano F et al. , N ucleic Acids Res. , 1985, 13, 7715—7728.
[7 ] Mendz J , Blanco L , Esteban J A et al. , Proc. Natl. Acad. Sci. USA , 1992, 89, 9579—9583.
[8 ] Blanco L , Bernad A , Lazalo J M et al. , J. Biol. Chem. , 1989, 264, 8935—8940.
[9 ] Depew R E, Liu L F, Wang J C, J. Biol. Chem. , 1978, 253, 511—518.
[10 ] Jaxel C, Capranico G, Kerrigan D et al. , J. Biol. Chem. , 1981, 256, 4805—4809.
[11 ] Champoux J J , J. Biol. Chem. , 1991, 266, 20418—20423.
[12 ] Shuman S, Kane E M , Morhan S G, Proc. Natl. Acad. Sci. USA , 1989, 86, 9703—9797.
[13 ] Wittschieben J , Peters B 5 , Shuman S, N ucleic Acids Res. , 1998, 26, 490—496.
[14 ] Tse Y C, McCarron B G, Arentzen R et al. , N ucleic Acdis Res. , 1983, 11, 8691—8701.
[15 ] Tse Y C, Kirgaard K, Wang J C, J. Biol. Chem. , 1980, 255, 5560—5565.
[16 ] Nelsen E M , Tewey K M , Liu L F, Proc. Natl. Acad. Sci. USA , 1984, 81, 1361—1365.
[17 ] Liu L F, Ann. Rev. Biochem. , 1989, 58, 371—375.
[18 ] Merino A , Madden K R, Lane W S et al. , Nature, 1993, 365, 227—232.
[19 ] Kretzchmar M , Meisterenst M , Loeder R, Proc. Natl. Acad. Sci. USA , 1993, 90, 11508—11512.
[20 ] Zhu J , Schiestl R H, Mol. Cell. Biol. , 1996, 4, 1805—1912.
[21 ] Meima R, Haan G J , Venema G et al. , Nucleic Acids Res. , 1998, 26, 2366—2373.
[22 ] Svejstrup J Q , Christiansen K, Cromova I I et al. , J. Mol. Biol. , 1991, 222, 669—678.
[23 ] Shuman S, J. Biol. Chem. , 1992, 267, 16755—16758.
[24 ] Hennigfeld K A , Hecht SM , Biochemistry , 1995, 34, 6120—6129.
[25 ] Christiansen K, Westergraad O , J. Biol. Chem. , 1994, 269, 721—729.
[26 ] Hennigfeld K A , Arslan T , Hech t SM , J. Am. Chem. Soc. , 1996, 118, 11701—11714.
[27 ] Dreef-Tromp C M , Van der Elst H, Van der Boogaart J E et al. , Nucleic Acids Res. , 1992, 20,4015—4020.
[28 ] Dreef-Tromp C M , Van der Elst H, Van der Boogaart J E et al. , Nucleic Acids Res. , 1992, 20,2435—2439.
[29 ] Kuyl-Yehenskiely E, tromp C M , Lefeber A W M et al. , Tetrahedron, 1988, 44, 6515—6523.
[30 ] Ueno Y, Saio R, Hata T ,nucleic Acids Res. , 1993, 21, 4451—4457.
[31 ] Filippov D, Kuyl-Yehenskiely E, Van der Marel G A et al. , Tetrahedron Lett. , 1998, 39, 3597—3600.
[32 ] Robles J , Pedroso E, Gandas A , Tetrahedron Lett. , 1994, 35, 4449—4452.
[33 ] Waldmann H, Gabold S, Chem. Commun. , 1997, 1861.
[34 ] Barton D J , Flangan J B, J. Virol. , 1997, 71, 8482—8489.
[35 ] Young D C, Dunn B M , Tobin G J et al. , J. Virol. , 1986, 58, , 715—723.
[36 ] Baron M H, Baltimore D, Cell, 1982, 30, 745—752.
[37 ] Takeda N , Kuhn R J , Yang C F et al. , J. Virol. , 1986, 60, 43—53.
[38 ] Tobin G J , Yong D C, Flanegan J B, Cell, 1989, 59, 511—519.
[39 ] Wang J C, Ann. Rev. Biochem. , 1985, 54, 665—697.
[40 ] Champoux J J ,in DNA Topologyand Biological Effects. , Cold Spring Harbor Laboratory, Cold Spring Harbor, N Y, 1990, 217—242.
[41 ] Sekiguchi J , Shuman S, J. Biol. Chem. , 1996, 271, 19436—19442.
[42 ] Boege F, Straub T , Kehr A et al. , J. Biol. Chem. , 1996, 271, 2262—2270.
[43 ] Hiasa H, Yousef D O , Marians K J , J. Biol. Chem. , 1996, 271, 26424—26429.
[44 ] Haralambidis J , Duncan L , Angus K et al. , Nucleic Acids Res. , 1990, 18, 493—499.
[45 ] Diek G, Hartmut S, Gema T et al. , CA , 1998, 651727.
[46 ] Vickers T , Baker B F, Cook P D et al. , Nucleic Acids Res. , 1991, 19, 3359.
[47 ] Kofoed T , Rasmussen P B, Valentin-Hansen P et al. , Acta Chemica Scandinavica, 1997, 51, 318—324.
[48 ] Gamper H, Reed M W , Cox T et al. , Nucleic Acids Res. , 1993, 21, 145—150.
[49 ] Eritja R, Pons A , Escarceller M et al. , Tetrahedron, 1991, 47, 4133—4120.
[50 ] dela Torre B G, Avino A , Tarrason G et al. , Tetrahedron Lett. , 1994, 35, 2733—2736.
[51 ] LiX X, Cheng Y Z, Hu X Y et al. , Peptide: Biologyand Chemistry. The Proceedings of the ChinesePep tide S ymp osium 98.
[52 ] Ede N , Tregear G W , Haralambidis J , Bioconjugate Chem. , 1994, 5, 373—378.
[53 ] Soukchareun S, Tregear G W , Haralambidis J , Bioconjugate Chem. , 1995, 6, 43—53.
[54 ] Soukchareun S, Haralambidis J , Tregear G W , Bioconjugate Chem. , 1998, 9, 466—475.

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[7] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.