中文
Announcement
More
Progress in Chemistry 1999, Vol. 11 Issue (02): 148- Previous Articles   Next Articles

• Review •

The Supramolecular Self -Organization of Nanoclusters

Li Yan;Shi Zujin;Zhou Xihuang;Gu Zhennan   

  1. Department of Chemistry, Peking University, Beijing 100871, China
  • Online: Published:
PDF ( 2459 ) Cited
Export

EndNote

Ris

BibTeX

The organization is a necessary step for the formation of devices from nanoclusters. The study of the organization of nanoclusters is very important for the development of nanotechnology. There are two kinds of methods for the supramolecular organization i. e. the formation of colloid crystals and the templated assembling. Two dimensional and three dimensional superlat tices can be obtained with the colloid crystal method. The molecular recognition between template and nanoclusters is the impetus of templated organization. The templates described in this paper are the solid polymer membranes, monolayers, organic compounds, and biological molecules. The monolayer template has been studied extensively. Because of the more adequate and effective molecular recognition, the DNA molecule will be a prospective template for the organization of nanoclusters. The operated organization of different nanoclusters should cometrue with this method.

CLC Number: 

[1 ] Service R F. Science, 1996, 271, 920—922.
[2 ] Alivisato s A P. Science, 1996, 271, 933—937.
[3 ] Heath J R. Science, 1995, 270, 1315—1316.
[4 ] Murray C B, Kagan C R, Bawendi M G, Science, 1995, 270, 1335—1338.
[5 ] Murray C B, No rris D J , Bawendi M G, J. Am. Chem. Soc. , 1993, 115, 8706.
[6 ] Motte L , Billoudet F, Pileni M P et al. , J. Phys. Chem. B , 1997, 101, 138—144.
[7 ] van Blaaderen A , Ruel R, Wiltzius P, Nature, 1997, 385, 321—324.
[8 ] Spatz J P, Roesher A , Moller M , Adv. Mater. , 1996, 8, 337—340.
[9 ] Torimoto T , Uchida H, Sakata T et al. , J. A m. Chem. Soc. , 1993, 115, 1874—1880.
[10 ] Whitesides G M. Chimica, 1990, 44, 310—311.
[11 ] Colvin V L , Golgstein A N , A livisatos A P, J. Am. Chem. Soc. , 1992, 114, 5221—5230.
[12 ] Kimizuka N , Kunitake T , Adv. Mater. , 1996, 8, 89—91.
[13 ] Fendler J H, Meldrum F C, Adv. Mater. , 1995, 7, 607—632.
[14 ] Brust M , Bethell D, Schiffren D J et al. , Adv. Mater. , 1995, 7, 795—797.
[15 ] Bethell D, Schiffrin D J , Nature, 1996, 382, 581.
[16 ] Alivisatos A P, Johnsson K P, Peng X et al. , Nature, 1996, 382, 609—611.
[17 ] Mirkin C A , Letsinger R L , Mucic R C et al. , Nature, 1996, 382, 607—609.
[18 ] Andres A P, Bielefeld J D, Henderson J I et al. , Science, 1996, 273, 1690—1693.
[19 ] Ronald P A , Thomas B, Matt D et al. , S cience, 1996, 272, 1323—1326.
[20 ] Collier C P, Saykally R J , Shiang J J et al. , Science, 1997, 277, 1978—1981.
[21 ] Orlov A O , Amlani I, Bernstein G H et al. , Science, 1997, 277, 928—930

[1] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[2] Benzhan Zhu, Jing Zhang, Miao Tang, Chunhua Huang, Jie Shao. Mechanism Investigation on DNA Damage Induced by Carcinogenic Haloquinoid Disinfection Byproducts [J]. Progress in Chemistry, 2022, 34(1): 227-236.
[3] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[4] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[5] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[6] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[7] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[8] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Ning Liu, Shuilin Liu, Suyun Wu, Lin Fu, Zhi Wu, Laibing Li. Preparation and Application of Matal-Based Mesoporous Solid Bases [J]. Progress in Chemistry, 2020, 32(5): 536-547.
[11] Zihan Lin, Huang Chen, Jiawei Dong, Daohui Zhao, Libo Li. Nanopore-Based Biomolecular Detection [J]. Progress in Chemistry, 2020, 32(5): 562-580.
[12] Qian Zhou, Na Li, Kun Li, Xiaoqi Yu. Detection of 5-Formylpyrimidines in DNA Based on Chemoselective Labeling [J]. Progress in Chemistry, 2020, 32(11): 1634-1650.
[13] Jiangbo Liu, Lihua Wang, Xiaolei Zuo. Cell Membranes Functionalization Based on DNA [J]. Progress in Chemistry, 2019, 31(8): 1067-1074.
[14] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[15] Rui Wang, Guoan Tai, Zenghui Wu, Wei Shao, Chuang Hou, Jinqian Hao. Theoretical and Experimental Research of Boron Nanostructures [J]. Progress in Chemistry, 2019, 31(12): 1696-1711.