中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (3): 393-400 DOI: 10.7536/PC230917 Previous Articles   Next Articles

• Review •

Triptycene Based Electroluminescent Materials

Huihui Xu, Qingsong Wang, Junjie Mao, Bihai Tong(), Qianfeng Zhang()   

  1. Institute of Molecular Engineering and Applied Chemistry, School of Metallurgy Engineering, Anhui University of Technology, Maanshan 243002, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: tongbihai@ahut.edu.cn (Bihai Tong);zhangqf@ahut.edu.cn (Qianfeng Zhang)
  • Supported by:
    National Natural Science Foundation of China(21572001)
Richhtml ( 2 ) PDF ( 30 ) Cited
Export

EndNote

Ris

BibTeX

Organic light-emitting diodes (OLEDs) have the advantages of self-luminous, high efficiency, light and thin structure, and can achieve diverse designs such as transparency and flexibility. They have broad application prospects in fields such as display and lighting. Triptycene is a stable, three-dimensional, and rigid structure formed by connecting three benzene rings through saturated carbon, and the conjugation between the three benzene rings is very small. Different substituents on the three benzene rings can also achieve very stable chirality. The triptycene group can provide an ideal rigid three-dimensional framework for the design of high-performance luminescent materials, in order to enhance the stability of luminescent materials, regulate intermolecular interactions (reduce concentration quenching while improving film formation), and maintain a stable chiral environment. In this paper, the research progress of incorporating triptycene group into electroluminescent electron transport layer and light-emitting layer material molecules is reviewed. The future of triptycene based electroluminescent materials is also prospected. By analyzing and summarizing the influence of triptycene group on material properties, its advantages are identified, so as to play a role in attracting more researchers to carry forward the advantages of triptycene in the field of new materials in the future.

Contents

1 Introduction

2 The host materials and electron transport materials with triptycene group

3 Fluorescent materials with triptycene group

4 TADF materials with triptycene group

5 Iridium complex phosphorescent materials with triptycene group

Fig. 1 Molecular structure of triptycene[2]
Fig. 2 Molecular structure of the host materials and electron transport materials with triptycene group[7,8]
Fig. 3 Molecular structure of triptycene-based pyrazine derivatives and their fluorescence photographs in solid state and n-hexane solution[8], Copyright 2015, Journal of Organic Chemistry
Fig. 4 Molecular structure of triptycene-based silole derivatives and fluorescence photographs of their powders in different states[10], Copyright 2020, Materials Chemistry Frontiers
Fig. 5 Molecular structure of TADF materials with simultaneous connection of donor and acceptor on the triptycene skeleton[12,15?~17]
Fig. 6 The molecular structure of TADF materials with only donor or acceptor connections on the triptycene skeleton[19???-23]
Fig. 7 Molecular structure of triptycene-based chiral TADF materials[27??~30]
Fig. 8 Molecular structure of iridium complexes containing triptycene groups[31,32,33,34]
[1]
Bartlett P D, Ryan M J, Cohen S G. J. Am. Chem. Soc., 1942, 64(11): 2649.

doi: 10.1021/ja01263a035
[2]
Wittig G, Ludwig R. Angew. Chem., 1956, 68(1): 40.
[3]
Gu M J, Wang Y F, Han Y, Chen C F. Org. Biomol. Chem., 2021, 19(46): 10047.

doi: 10.1039/D1OB01818C
[4]
(a) Li T Y, Wu J, Wu Z G, Zuo J L, Pan Y. Coordination Chemistry Reviews, 2018, 374: 55.

doi: 10.1016/j.ccr.2018.06.014
(b) Chen D, Li W, Gan L, Wang Z, Li M, Su S J. Materials Science & Engineering R-reports, 2020, 142: 100581.
[5]
Baldo M A, O’Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395(6698): 151.

doi: 10.1038/25954
[6]
Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492(7428): 234.

doi: 10.1038/nature11687
[7]
Chou H H, Shi H H, Cheng C H. Journal of materials Chemistry, 2010, 20(4): 798.

doi: 10.1039/B918188A
[8]
Jayakumar J, Wu W L, Chang C L, Han T Y, Ting L Y, Yeh C M, Hung H W, Chou H H. Org. Electron., 2021, 88: 106013.

doi: 10.1016/j.orgel.2020.106013
[9]
Biegger P, Stolz S, Intorp S N, Zhang Y X, Engelhart J U, Rominger F, Hardcastle K I, Lemmer U, Qian X H, Hamburger M, Bunz U H F. J. Org. Chem., 2015, 80(1): 582.

doi: 10.1021/jo502564w
[10]
Amro K, Thakur A K, Rolland M, Van Der Lee A, Lemaur V, Lazzaroni R, Rault-Berthelot J, Poriel C, Hirsch L, Clément S, Gerbier P. Mater. Chem. Front., 2020, 4(7): 2006.

doi: 10.1039/D0QM00087F
[11]
Mistry J R, Montanaro S, Wright I A. Mater. Adv., 2023, 4(3): 787.

doi: 10.1039/D2MA00523A
[12]
Kawasumi K, Wu T, Zhu T Y, Chae H S, Van Voorhis T, Baldo M A, Swager T M. J. Am. Chem. Soc., 2015, 137(37): 11908.

doi: 10.1021/jacs.5b07932
[13]
Voll C C A, Engelhart J U, Einzinger M, Baldo M A, Swager T M. Eur. J. Org. Chem., 2017, 2017(32): 4846.

doi: 10.1002/ejoc.v2017.32
[14]
Gao Y, Su T, Wu Y, Geng Y, Zhang M, Su Z M. Chem. Phys. Lett., 2016, 666: 7.

doi: 10.1016/j.cplett.2016.10.069
[15]
Dai G L, Zhang M, Wang K, Fan X C, Shi Y Z, Sun D M, Liu W, Chen J X, Yu J, Ou X M, Xiong S Y, Zheng C J, Zhang X H. ACS Appl. Mater. Interfaces, 2021, 13(21): 25193.

doi: 10.1021/acsami.1c05646
[16]
Wada Y, Nakagawa H, Matsumoto S, Wakisaka Y, Kaji H. Nat. Photonics, 2020, 14(10): 643.

doi: 10.1038/s41566-020-0667-0
[17]
Huang Y Y, Zhang D H, Tao X D, Wei Z Z, Jiang S S, Meng L Y, Yang M X, Chen X L, Lu C Z. Dyes Pigm., 2022, 204: 110397.

doi: 10.1016/j.dyepig.2022.110397
[18]
Mubarok H, Amin A, Lee T, Jung J, Lee J H, Lee M H. Angewandte Chemie, 2023, e202306879.
[19]
Huang W, Einzinger M, Zhu T, Chae H S, Jeon S, Ihn S G, Buchwald S L. Chemistry of Materials, 2018, 30(5): 1462.

doi: 10.1021/acs.chemmater.7b03490
[20]
Zhan Q, Cao C, Huang T A, Zhou C J, Xie Z Y, Zou Y, Lee C S, Yang C L. Adv. Opt. Mater., 2021, 9(16): 2100273.

doi: 10.1002/adom.v9.16
[21]
Jing Y Y, Tao X D, Yang M X, Chen X L, Lu C Z. Chem. Eng. J., 2021, 413: 127418.

doi: 10.1016/j.cej.2020.127418
[22]
Wang Y J, Pan Z H, Tao Z Y,. Wang Y,. Tong B H,. Feng M Q,. Song M X. Chemical Journal of Chinese Universities Chinese, 2023, 44(4): 20220562.
(王英杰, 潘泽晖, 陶正煜, 王妍, 童碧海, 冯敏强, 宋明星. 高等学校化学学报, 2023, 44(4): 20220562.)
[23]
Ji S C, Zhao T X, Wei Z Z, Meng L Y, Tao X D, Yang M X, Chen X L, Lu C Z. Chem. Eng. J., 2022, 435: 134868.

doi: 10.1016/j.cej.2022.134868
[24]
(a) Montanaro S, Pander P, Mistry J R, Elsegood M R J, Teat S J, Bond A D, Wright I A, Congrave D G, Etherington M K. J. Mater. Chem. C, 2022, 10(16): 6306.

doi: 10.1039/D2TC00460G
(b) Montanaro S, Congrave D G, Etherington M K, Wright I A. Journal of Materials Chemistry, 2019, 7(41): 12886
[25]
Li M, Chen C F. Org. Chem. Front., 2022, 9(22): 6441.

doi: 10.1039/D2QO01383E
[26]
Zhang Y P, Zheng Y X. Dalton Trans., 2022, 51(26): 9966.

doi: 10.1039/D2DT01582J
[27]
Wang Y F, Li M, Teng J M, Zhou H Y, Chen C F. Adv. Funct. Mater., 2021, 31(49): 2106418.

doi: 10.1002/adfm.v31.49
[28]
Wang Y F, Li M, Teng J M, Zhou H Y, Zhao W L, Chen C F. Angew. Chem. Int. Ed., 2021, 60(44): 23619.

doi: 10.1002/anie.v60.44
[29]
Wang Y F, Chen C, Cui L Y, Teng J M, Li M, Lu H Y, Chen C F. Org. Electron., 2021, 99: 106355.

doi: 10.1016/j.orgel.2021.106355
[30]
Zhang S H, Chen J F, Hu G F, Zhang N, Wang N, Yin X D, Chen P K. Organometallics, 2022, 41(2): 99.

doi: 10.1021/acs.organomet.1c00447
[31]
Wang Y, Xiao Y P, Zhou Y Y, Hu C G, Tong B H, Ye S H, Mei Q B. Dalton Trans., 2019, 48(43): 16289.

doi: 10.1039/C9DT03182K
[32]
Zhou Y Y, Xu D Y, Cheng W, Wang Y, Tong B H, He G F, Tian Y P. New J. Chem., 2020, 44(20): 8587.

doi: 10.1039/D0NJ01930E
[33]
Mei Q B, Liu L, Yang J C, Jiang X Y, Ye S H, Zhang L, Tong B H. Dyes Pigm., 2022, 199: 110075.

doi: 10.1016/j.dyepig.2021.110075
[34]
Tao Z Y, Pan Z H, Wang Y J, Zhang J L, Wang Q S, Zhang Q F, Tong B H, Fung M K, Kong H. Inorg. Chem. Front., 2023, 10(1): 49.

doi: 10.1039/D2QI01786E
[35]
Chen M, Zhang F J, Zhang M, Wang Y, Wang P, Wang S, Tong B H, Chen P, Kong H. Dyes Pigm., 2023, 214: 111205.

doi: 10.1016/j.dyepig.2023.111205
[1] Wei Tang, Yan Bing, Xudong Liu, Hongji Jiang. Multifunctional Organic Luminescent Materials Based on Benzophenone Frameworks [J]. Progress in Chemistry, 2023, 35(10): 1461-1485.
[2] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[3] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[4] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[5] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[6] Chao Zheng, Yizhong Dai, Lingfeng Chen, Mingguang Li, Runfeng Chen, Wei Huang. Principle and Technique of Sensitized Fluorescent Organic Light-Emitting Diodes [J]. Progress in Chemistry, 2020, 32(9): 1352-1367.
[7] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[8] Zhiwen Yang, Yingying Zhan, Shaomin Ji, Qingdan Yang, Qi Li, Yanping Huo. Boron-Containing Organic Light-Emitting Diodes: Materials and Devices [J]. Progress in Chemistry, 2019, 31(6): 906-928.
[9] Qinshan Cai, Shirong Wang, Yin Xiao, Xianggao Li. Application of Solution-Processed Multi-Layer Organic Light-Emitting Diodes Based on Cross-Linkable Small Molecular Hole-Transporting Materials [J]. Progress in Chemistry, 2018, 30(8): 1202-1221.
[10] Hanxiao Wang, Ying Han, Chuanfeng Chen*. The Directional Threading of Guests and Construction of Orientational Assemblies Based on Three-Dimensional Nonsymmetrical Hosts [J]. Progress in Chemistry, 2018, 30(5): 616-627.
[11] Jiang He, Jin Jibiao, Chen Runfeng, Zheng Chao, Huang Wei. Thermally Activated Delayed Fluorescence Materials Based on Donor-Acceptor Structures [J]. Progress in Chemistry, 2016, 28(12): 1811-1823.
[12] Zhong Bofan, Wang Shirong, Xiao Yin, Li Xianggao. Bipolar Blue Fluorescent Materials for Organic Light-Emitting Devices [J]. Progress in Chemistry, 2015, 27(8): 986-1001.
[13] Yang Lei, Cheng Tao, Zeng Wenjin, Lai Wenyong, Huang Wei. Inkjet-Printed Conductive Polymer Films for Optoelectronic Devices [J]. Progress in Chemistry, 2015, 27(11): 1615-1627.
[14] Wang Guangxia, Che Yanke, Jiang Hua. Single Molecular Rotary Machine [J]. Progress in Chemistry, 2014, 26(06): 909-918.
[15] Su Bin, Zhao Jing, Liu Chunbo, Che Guangbo, Wang Qingwei, Xu Zhanlin. Small Molecular Organic Electroluminescent Materials Based on 8-Hydroxyquinoline and Its Derivatives [J]. Progress in Chemistry, 2013, 25(07): 1090-1101.