中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC230903   

Research Progress of Biomaterials Based on Lignocellulose

Bin Xu1,3, Jianguo Liu2,*, Xinghua Zhang2, Lungang Chen2, Qi Zhang3, Longlong Ma2,*   

  1. 1. School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
    2. School of Energy and Environment, Southeast University, Nanjing 210096, China;
    3. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received: Revised:
  • Contact: *e-mail: liujg@seu.edu.cn; mall@seu.edu.cn
  • Supported by:
    Fundamental Research Funds for the Central Universities (No. 2242022R10058).
Cited
Export

EndNote

Ris

BibTeX

With the continuous depletion of fossil energy and the continuous destruction of the ecological environment, the development of environmentally friendly renewable electrochemical energy storage devices and biomedical materials is particularly urgent. As an important renewable resource, lignocellulosic biomass has the advantages of low cost, easy accessibility, environmental friendliness, and rich pore structure, and it has a wide range of application prospects as a renewable, biodegradable, and biocompatible substrate for excellent modified materials. In this paper, the latest research progress in preparing biomass-derived materials for high-performance energy storage devices and biomedical fields is summarized and outlooked, and the problems and challenges are also pointed out.

CLC Number: 

[1] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[2] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[3] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[4] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[5] Xiangyun Chen, Bing Yuan, Fengli Yu, Congxia Xie, Shitao Yu. Lignin: A Potential Source of Biomass-Based Catalysts [J]. Progress in Chemistry, 2021, 33(2): 303-317.
[6] Xiaozhen Ma, Qing Luo, Dongdong Qin, Jing Chen, Jin Zhu, Ning Yan. Lignin-Based Polyurethane [J]. Progress in Chemistry, 2020, 32(5): 617-626.
[7] Lina Shi, Xin Hu, Ning Zhu, Kai Guo. Cellulose-Based Dielectric Composite [J]. Progress in Chemistry, 2020, 32(12): 2022-2033.
[8] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[9] Guofu Qin, Yihuan Liu, Fan Yin, Xin Hu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Ring-Opening Polymerization [J]. Progress in Chemistry, 2020, 32(10): 1547-1556.
[10] Jinglin Zhai, Xin Hu, Chengkou Liu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2019, 31(9): 1293-1302.
[11] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[12] Ying Qiao, Na Teng, Chengkai Zhai, Haining Na, Jin Zhu. High Efficient Hydrolysis of Cellulose into Sugar by Chemical Catalytic Method [J]. Progress in Chemistry, 2018, 30(9): 1415-1423.
[13] Haishun Du, Chao Liu, Miaomiao Zhang, Qingshan Kong, Bin Li*, Mo Xian. Preparation and Industrialization Status of Nanocellulose [J]. Progress in Chemistry, 2018, 30(4): 448-462.
[14] Na Ji, Jingjing Song, Xinyong Diao, Chunfeng Song, Qingling Liu, Mingyuan Zheng. Transformation of Lignin and Its Model Compounds into Value-Added Chemicals Using Sulfide Catalysts [J]. Progress in Chemistry, 2017, 29(5): 563-578.
[15] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.