中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (3): 297-318 DOI: 10.7536/PC230728 Previous Articles   Next Articles

• Review •

Efficient Catalysts for the Selective Hydrogenation of Unsaturated Aldehydes

Xingyue Yang, Shijie Zhou, Yusen Yang(), Min Wei   

  1. State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: yangyusen@mail.buct.edu.cn
  • Supported by:
    National Key Research and Development Program(2021YFC2103500); National Natural Science Foundation of China(22172006); National Natural Science Foundation of China(22102006); National Natural Science Foundation of China(22288102)
Richhtml ( 9 ) PDF ( 66 ) Cited
Export

EndNote

Ris

BibTeX

The selective hydrogenation of unsaturated aldehydes is an important process of fine chemical processing that is widely used in the fields of flavor, medicine and food production, agricultural product processing, and so on. However, the hydrogenation reactivity of current catalysts still needs to be improved and further modulation of catalyst structures is needed. Three design strategies for the selective hydrogenation catalysts are summarized in this paper, modifying the electronic properties of metal active sites, enhancing the synergistic effect between the metal active sites and the electrophilic sites, and utilizing the structural effect to change the adsorption strength and hydrogenation activity of C=O bond or C=C bond. The influences of hydrogen source types, reaction solvents, temperatures and hydrogen pressures on catalytic performance are also summarized. The density functional theory (DFT) calculation, the reaction kinetic model, and the structure-activity relationship of catalysts related to the selective hydrogenation of unsaturated aldehydes are summarized. In the final section, problems, and challenges in the selective hydrogenation of unsaturated aldehydes are discussed, and some feasible solutions are further proposed.

Contents

1 Introduction

2 Design strategy of catalysts

2.1 Modifying electronic properties of metal active sites

2.2 Enhancing the synergistic effect between the metal active sites and the electrophilic sites

2.3 Utilizing the structural effect

3 The influence of reaction conditions on the catalytic performance

3.1 Hydrogen source types

3.2 Reaction solvents

3.3 Reaction temperatures

3.4 Hydrogen pressures

4 The density functional theory calculation

5 Kinetic study of the hydrogenation of unsaturated Aldehydes

6 The hydrogenation mechanism of unsaturated aldehydes

7 Conclusion and outlook

Fig. 1 Reaction routes of selective hydrogenation of unsaturated aldehyde
Fig. 2 Adsorption modes of acrolein: (a) η1-mode (atop) via the carbonyl O. (b) η2-modes via either the C=C or the C=O bond. (c) η3-mode via the C=C bond and the carbonyl O, as well as a metallocycle via the terminal atoms. (d) η4-modes involving all backbone atoms
Fig. 3 Different catalysts using carbon materials as support: (a) carbon nanosheets with different degrees of graphitization[10] (Copyright 2016, Royal Society of Chemistry) (b) Three dimensional hierarchical porous carbon skeleton[11] (Copyright 2018, Wiley-VCH Verlag Gmbh), (c) monodisperse nitrogen doped hollow carbon spheres[12] (Copyright 2016, Elsevier), (d) three-dimensional N-doped honeycomb porous carbon[13] (Copyright 2022, Elsevier BV) supported Pt catalysts
Fig. 4 Adding the second kind of metal to prepare the catalyst: (a) adding Fe[30] (Copyright 2018, Elsevier Science), (b) adding Co[32] (Copyright 2018, Elsevier Science), (c) adding Sn[33] (Copyright 2020, Elsevier), (d) adding Ga[34] (Copyright 2020, Elsevier Science) to prepare the Pt-based high efficiency catalyst
Fig. 5 Preferential adsorption of C=O bond in crotonaldehyde at metal-carrier interface of Pt13/CeO2(111)[9]. (Copyright 202020, American Chemical Society)
Fig. 6 The catalyst is prepared by packing metal nanoparticles into (a) UiO-66[91] (Copyright 2022, American Chemical Society), (b) silicalite-1 framework[92] (Copyright 2022, Elsevier), (c) in Yolk-Shell MOFs[93] (Copyright 2020, Wiley-VCH Verlag), (d) MIL-101(Fe)[94] (Copyright 2022, Elsevier)
Fig. 7 Hydrogenation was performed using (a) HCOOH[114] (Copyright 2019, American Chemical Society), (b) isopropyl alcohol[115] (Copyright 2017, Science Press), (c) aminoborane[116] (Copyright 2020, Wiley-VCH Verlag), (d) aminoborane[117] (Copyright 2022, Elsevier), (e) ethanol[118] (Copyright 2020, American Chemical Society), (f) iPrOH and EtOH[119] (Copyright 2018, Wiley-VCH), as hydrogen sources
Fig. 8 Selective hydrogenation of (a) methanol[121] (Copyright 2018, Elsevier Masson), (b) 2-propanol[123] (Copyright 2021, Elsevier Science), (c) alcohols with different molecular sizes[124] (Copyright 2018, American Chemical Society), and (d) water[72] (Copyright 2020, American Chemical Society)
Fig. 9 (a) Time courses of the yield of cinnamaldehyde and cinnamyl alcohol over the Au25/ZnAl-300 catalyst[106] (Copyright 2021, Elsevier B.V); (b) the effect of reaction time on the conversion of CAL and selectivity to products on Ni-C-600[144] (Copyright 2022, Springer US)
Fig. 10 Horiuti-Polyani mechanism for the hydrogenation of the unsaturated aldehyde, in which one H atom is added in each step[9]. (Copyright 2020, American Chemical Society)
Fig. 11 The hydrogenation of crotonaldehyde on Pt surfaces to account for the trends seen in selectivity with increasing reactant pressure, namely, a shift from the saturated alcohol to the unsaturated aldehyde[158]. (Copyright 2018, American Chemical Society)
Fig. 12 Reaction route for the formation of octylalcohol over (a) 3Ir/BN and (b) 3Ir-0.05Fe/BN catalysts[148]. (Copyright 2019, Elsevier)
[1]
Zhao M T, Yuan K, Wang Y, Li G D, Guo J, Gu L, Hu W P, Zhao H J, Tang Z Y. Nature, 2016, 539(7627): 76.

doi: 10.1038/nature19763
[2]
Ke J X, Xiao L Y, Yu G X, Wu H J, Shen G H, Zhang Z Q. Int. J. Biol. Macromol., 2019, 125: 642.

doi: 10.1016/j.ijbiomac.2018.12.094
[3]
Sun D L, Yamada Y, Sato S, Ueda W. Green Chem., 2017, 19(14): 3186.

doi: 10.1039/C7GC00358G
[4]
Hidalgo-Carrillo J, Sebti J, Marinas A, Marinas J M, Sebti S, Urbano F J. J. Colloid Interface Sci., 2012, 382(1): 67.

doi: 10.1016/j.jcis.2012.05.050
[5]
Golmakani M T, Tahsiri Z, Alavi N. Int. J. Food Prop., 2018, 21(1): 2660.
[6]
Radhika G R, Raoul B, Mark T G, Pei L, Thomas W Hansen, Kathleen S D, David D H, Jean P T. ACS Catal., 2022, 12(12): 7344.

doi: 10.1021/acscatal.2c01063
[7]
Alfilfil L, Ran J S, Chen C L, Dong X L, Wang J J, Han Y. Microporous Mesoporous Mater., 2022, 330: 111566.

doi: 10.1016/j.micromeso.2021.111566
[8]
Wang G H, Deng X H, Gu D, Chen K, Tüysüz H, Spliethoff B, Bongard H J, Weidenthaler C, Schmidt W, Schüth F. Angew. Chem. Int. Ed., 2016, 55(37): 11101.

doi: 10.1002/anie.v55.37
[9]
Luneau M, Lim J S, Patel D A, Sykes E C H, Friend C M, Sautet P. Chem. Rev., 2020, 120(23): 12834.

doi: 10.1021/acs.chemrev.0c00582
[10]
Han Q, Liu Y F, Wang D, Yuan F L, Niu X Y, Zhu Y J. RSC Adv., 2016, 6(100): 98356.

doi: 10.1039/C6RA17979G
[11]
Hu D, Fan W Q, Liu Z, Li L. ChemCatChem, 2018, 10(4): 779.

doi: 10.1002/cctc.v10.4
[12]
Nongwe I, Ravat V, Meijboom R, Coville N J. Appl. Catal. A Gen., 2016, 517: 30.

doi: 10.1016/j.apcata.2016.02.025
[13]
Yu H T, Xu Y, Havener K, Zhang L, Wu W J, Liao X J, Huang K. Mol. Catal., 2022, 525: 112343.
[14]
Tian F P, Zhang M J, Zhang X C, Chen X, Wang J L, Zhang Y F, Meng C G, Liang C H. J. Mater. Sci., 2022, 57(5): 3168.

doi: 10.1007/s10853-021-06796-z
[15]
Steffan M, Klasovsky F, Arras J, Roth C, Radnik J, Hofmeister H, Claus P. Adv. Synth. Catal., 2008, 350(9): 1337.

doi: 10.1002/adsc.v350:9
[16]
Vilella I M J, de Miguel S R, de Lecea C S M, Linares-Solano Á, Scelza O A. Appl. Catal. A Gen., 2005, 281(1-2): 247.

doi: 10.1016/j.apcata.2004.10.019
[17]
Li L, Gao G, Zheng J, Shi X, Liu Z. Diam. Relat. Mater., 2019, 91: 272.

doi: 10.1016/j.diamond.2018.12.018
[18]
Nagpure A S, Gogoi P, Chilukuri S V. Chem., 2021, 16(18): 2702.
[19]
Shaikh M N, Abdelnaby M M, Hakeem A S, Nasser G A, Yamani Z H. ACS Appl. Nano Mater., 2021, 4(4): 3508.

doi: 10.1021/acsanm.1c00007
[20]
Nie R F, Miao M, Du W C, Shi J J, Liu Y C, Hou Z Y. Appl. Catal. B Environ., 2016, 180: 607.

doi: 10.1016/j.apcatb.2015.07.015
[21]
Nagpure A S, Gurrala L, Gogoi P, Chilukuri S V. RSC Adv., 2016, 6(50): 44333.

doi: 10.1039/C6RA04154J
[22]
Xu Z X, Duong-Viet C, Liu Y F, Baaziz W, Li B, Nguyen-Dinh L, Ersen O, Pham-Huu C. Appl. Catal. B Environ., 2019, 244: 128.

doi: 10.1016/j.apcatb.2018.11.041
[23]
Xue B, Xu T C, Li D S, Xu J, Li Y X, Wang F, Zhu J. Catal. Sci. Technol., 2020, 10(4): 1096.

doi: 10.1039/C9CY02002K
[24]
Zhu J, Dou M D, Lu M H, Xiang X, Ding X J, Liu W X, Li M S. Appl. Catal. A Gen., 2019, 575: 11.

doi: 10.1016/j.apcata.2019.02.009
[25]
Chen S J, Meng L, Chen B X, Chen W Y, Duan X Z, Huang X, Zhang B S, Fu H B, Wan Y. ACS Catal., 2017, 7(3): 2074.

doi: 10.1021/acscatal.6b02720
[26]
Wang X X, Zheng H Y, Liu X J, Xie G Q, Lu J Q, Jin L Y, Luo M F. Appl. Catal. A Gen., 2010, 388(1/2): 134.

doi: 10.1016/j.apcata.2010.08.044
[27]
Chiu M E, Watson D J, Kyriakou G, Tikhov M S, Lambert R M. Angew. Chem. Int. Ed., 2006, 45(45): 7530.

doi: 10.1002/anie.v45:45
[28]
Chiu M E, Kyriakou G, Williams F J, Watson D J, Tikhov M S, Lambert R M. Chem. Commun., 2006, (12): 1283.
[29]
Abid M, Touroude R. Catal. Lett., 2000, 69: 139.

doi: 10.1023/A:1019090411031
[30]
Dai Y H, Gao X, Chu X F, Jiang C Y, Yao Y, Guo Z, Zhou C M, Wang C, Wang H M, Yang Y H. J. Catal., 2018, 364: 192.

doi: 10.1016/j.jcat.2018.05.008
[31]
Lin W, Cheng H, Li X, Zhang C, Zhao F, Arai M. Chinese J. Catal., 2018, 395:988.
(林伟伟, 程海洋, 李小汝, 张弨, 赵凤玉, 荒井正彦. 催化学报, 2018, 39:988.)
[32]
Wang X F, He Y F, Liu Y Z, Park J, Liang X H. J. Catal., 2018, 366: 61.

doi: 10.1016/j.jcat.2018.07.031
[33]
Merlo A B, Machado B F, Vetere V, Faria J L, Casella M L. Appl. Catal. A Gen., 2010, 383(1-2): 43.

doi: 10.1016/j.apcata.2010.05.046
[34]
Hui T L, Miao C L, Feng J T, Liu Y N, Wang Q, Wang Y F, Li D Q. J. Catal., 2020, 389: 229.

doi: 10.1016/j.jcat.2020.05.036
[35]
Wang H P, Bai S X, Pi Y C, Shao Q, Tan Y M, Huang X Q. ACS Catal., 2019, 9(1): 154.

doi: 10.1021/acscatal.8b03471
[36]
Gu Z Z, Chen L Y, Li X Z, Chen L, Zhang Y Y, Duan C Y. Chem. Sci., 2019, 10(7): 2111.

doi: 10.1039/C8SC05450A
[37]
Li X J, Zhang S F, Zhu L H, Liu J, Zhang H, Zhao N, Chen B H. Mater. Chem. Phys., 2023, 294: 127003.

doi: 10.1016/j.matchemphys.2022.127003
[38]
Wang G M, Xin H Y, Wang Q X, Wu P, Li X H. J. Catal., 2020, 382: 1.

doi: 10.1016/j.jcat.2019.12.004
[39]
Wang L W, Han R R, Ma Y F, Duyar M S, Liu W, Liu J. J. Phys. Chem. C, 2021, 125(41): 22603.

doi: 10.1021/acs.jpcc.1c07693
[40]
Zhang W B, Xin H Y, Zhang Y Q, Jin X, Wu P, Xie W H, Li X H. J. Catal., 2021, 395: 375.

doi: 10.1016/j.jcat.2021.01.034
[41]
Tian Z B, Liu C, Li Q Y, Hou J Y, Li Y, Ai S Y. Appl. Catal. A Gen., 2015, 506: 134.

doi: 10.1016/j.apcata.2015.08.023
[42]
Su J F, Shi W, Liu X C, Zhang L Y, Cheng S B, Zhang Y, Botton G A, Zhang B S. J. Catal., 2020, 388: 164.

doi: 10.1016/j.jcat.2020.05.015
[43]
Zhu M W, Huang B, Shao Q, Pi Y C, Qian Y, Huang X Q. ChemCatChem, 2018, 10(15): 3214.

doi: 10.1002/cctc.v10.15
[44]
Dai L X, Zhu W, Lin M, Zhang Z P, Gu J, Wang Y H, Zhang Y W. Inorg. Chem. Front., 2015, 2(10): 949.

doi: 10.1039/C5QI00129C
[45]
Wang Q X, Wang G M, Xin H Y, Liu J X, Xiong G, Wu P, Li X H. Catal. Sci. Technol., 2019, 9(12): 3226.

doi: 10.1039/C9CY00755E
[46]
Zhang N, Shao Q, Wang P T, Zhu X, Huang X Q. Small, 2018, 14(19): 1704318.

doi: 10.1002/smll.v14.19
[47]
Wang P, Shao Q, Cui X, Zhu X, Huang X. Adv. Funct. Mater., 2018, 28: 1705918.

doi: 10.1002/adfm.v28.5
[48]
Wang X F, Liang X H, Geng P, Li Q B. ACS Catal., 2020, 10(4): 2395.

doi: 10.1021/acscatal.9b05031
Wang X F, Liang X H, Geng P, Li Q B. ACS Catal., 2020, 10(4): 2395.

doi: 10.1021/acscatal.9b05031
[49]
Cattaneo S, Freakley S J, Morgan D J, Sankar M, Dimitratos N, Hutchings G J. Catal. Sci. Technol., 2018, 8(6): 1677.

doi: 10.1039/C7CY02556D
Cattaneo S, Freakley S J, Morgan D J, Sankar M, Dimitratos N, Hutchings G J. Catal. Sci. Technol., 2018, 8(6): 1677.

doi: 10.1039/C7CY02556D
[50]
Li R R, Yao W B, Jin Y X, Jia W P, Chen X Y, Chen J J, Zheng J L, Hu Y, Han D M, Zhao J. Chem. Eng. J., 2018, 351: 995.

doi: 10.1016/j.cej.2018.06.146
[51]
Ma Y, Feng L, Guo Z L, Deng J T, Pham-Huu C, Liu Y F. Front. Chem., 2019, 7: 751.

doi: 10.3389/fchem.2019.00751
[52]
Li P H, Wang Y Y, Wang Y W, Jin G Q, Guo X Y, Tong X L. Chin. J. Chem., 2020, 38(4): 367.

doi: 10.1002/cjoc.v38.4
[53]
Dai Y H, Chu X F, Gu J J, Gao X, Xu M, Lu D, Wan X Y, Qi W, Zhang B S, Yang Y H. Appl. Catal. A Gen., 2019, 582: 117098.

doi: 10.1016/j.apcata.2019.05.032
[54]
Rana S, Jonnalagadda S B. RSC Adv., 2017, 7(5): 2869.

doi: 10.1039/C6RA26443C
[55]
Yang Y S, Rao D M, Chen Y D, Dong S Y, Wang B, Zhang X, Wei M. ACS Catal., 2018, 8(12): 11749.

doi: 10.1021/acscatal.8b02755
[56]
Mohire S S, Yadav G D. Ind. Eng. Chem. Res., 2018, 57(28): 9083.

doi: 10.1021/acs.iecr.8b00957
[57]
Prakash M G, Mahalakshmy R, Krishnamurthy K R, Viswanathan B. Catal. Today, 2016, 263: 105.

doi: 10.1016/j.cattod.2015.09.053
[58]
Wei S P, Zhao Y T, Fan G L, Yang L, Li F. Chem. Eng. J., 2017, 322: 234.

doi: 10.1016/j.cej.2017.04.026
[59]
Weng Z H, Zaera F. ACS Catal., 2018, 8(9): 8513.

doi: 10.1021/acscatal.8b02431
[60]
Zahid M, Li J, Ismail A, Zaera F, Zhu Y J. Catal. Sci. Technol., 2021, 11(7): 2433.

doi: 10.1039/D0CY02082F
[61]
Mo M, Tang J S, Zou L J, Xun Y Y, Guan H R. RSC Adv., 2022, 12(51): 33099.

doi: 10.1039/D2RA05595C
[62]
Hidalgo-Carrillo J, Aramendía M A, Marinas A, Marinas J M, Urbano F J. Appl. Catal. A Gen., 2010, 385(1-2): 190.

doi: 10.1016/j.apcata.2010.06.049
[63]
Wei Z J, Zhu X M, Liu X S, Xu H Q, Li X H, Hou Y X, Liu Y X. Chin. J. Chem. Eng., 2019, 27(2): 369.

doi: 10.1016/j.cjche.2018.04.022
[64]
Cao Y Q, Chen B, Guerrero-Sánchez J, Lee I, Zhou X G, Takeuchi N, Zaera F. ACS Catal., 2019, 9(10): 9150.

doi: 10.1021/acscatal.9b02547
[65]
Liu Y C, Wang X C, Zhang C, Xu Q, Dang L L, Zhao X, Tan H Q, Li Y G, Zhao F Y. New J. Chem., 2022, 46(33): 15950.

doi: 10.1039/D2NJ02497G
[66]
Tamura M, Tokonami K, Nakagawa Y, Tomishige K. Chem. Commun., 2013, 49(63): 7034.

doi: 10.1039/c3cc41526k
[67]
Martinez J, Rojas H, Castaneda C, Diaz G, Gomez-Cortes A, Arenas-Alatorre J. Curr. Org. Chem., 2012, 16(23): 2791.

doi: 10.2174/138527212804546877
[68]
Zhao J, Ni J, Xu J H, Xu J T, Cen J, Li X N. Catal. Commun., 2014, 54: 72.

doi: 10.1016/j.catcom.2014.05.012
[69]
Lin W W, Cheng H Y, He L M, Yu Y C, Zhao F Y. J. Catal., 2013, 303: 110.

doi: 10.1016/j.jcat.2013.03.002
[70]
Zhao J B, Yuan H F, Gui Y H, Li X M, Qin X M, Wei C Z, Liu Y F, Wang G Q, Zhou L M, Fang S M. J. Mater. Sci., 2021, 56(9): 5760.

doi: 10.1007/s10853-020-05634-y
[71]
Yu J, Yang Y S, Wei M. Acta Chim. Sinica, 2019, 77, 1129.

doi: 10.6023/A19070260
[72]
Gao X, Dai H, Peng L L, Lu D, Wan X Y, Zhou C M, Zheng J W, Dai Y H, Wang H M, Yang Y H. ACS Appl. Mater. Interfaces, 2020, 12(2): 2516.

doi: 10.1021/acsami.9b19160
[73]
Gao Z X, Cai L Y, Miao C L, Hui T L, Wang Q, Li D Q, Feng J T. ChemCatChem, 2022, 14(18): e202200634.

doi: 10.1002/cctc.v14.18
[74]
Mateen M, Akhtar M N, Gao L, Cheong W C M, Lv S S, Zhou Y, Chen Z. Nano Res., 2022, 15(8): 7107.

doi: 10.1007/s12274-022-4405-4
[75]
He S N, Xie L F, Che M W, Chan H C, Yang L C, Shi Z P, Tang Y, Gao Q S. J. Mol. Catal. A Chem., 2016, 425: 248.

doi: 10.1016/j.molcata.2016.10.016
[76]
Zhang R, Wang L C, Ren J Z, Hu C C, Lv B L. J. Colloid Interface Sci., 2023, 630: 549.

doi: 10.1016/j.jcis.2022.10.117
[77]
Li Z J, Wei W, Li H H, Li S H, Leng L P, Zhang M Y, Horton J H, Wang D S, Sun W W, Guo C M, Wu W, Wang J. ACS Nano, 2021, 15(6): 10175.

doi: 10.1021/acsnano.1c02094
[78]
Zhang R, Wang L C, Yang X, Tao Z, Ren X B, Lv B L. Appl. Surf. Sci., 2019, 492: 736.

doi: 10.1016/j.apsusc.2019.06.269
[79]
Kato S, Ohyama J, Machida M, Satsuma A. Catal. Sci. Technol., 2019, 9(9): 2097.

doi: 10.1039/C9CY00158A
[80]
Hu Q M, Wang S, Gao Z, Li Y Q, Zhang Q, Xiang Q, Qin Y. Appl. Catal. B Environ., 2017, 218: 591.

doi: 10.1016/j.apcatb.2017.06.087
[81]
Cui R Q, Zhou J Q, Wang D, Zhao Y F, Xiang X, Shang H S, Zhang B. Dalton Trans., 2023, 52(11): 3325.

doi: 10.1039/D2DT03600B
[82]
Xin H Y, Zhang W B, Xiao X X, Chen L, Wu P, Li X H. J. Catal., 2021, 393: 126.

doi: 10.1016/j.jcat.2020.11.036
[83]
Peres L, Axet M R, Yi D L, Serp P, Soulantica K. Catal. Today, 2020, 357: 166.

doi: 10.1016/j.cattod.2019.05.048
[84]
Jiang F, Cai J, Liu B, Xu Y B, Liu X H. RSC Adv., 2016, 6(79): 75541.

doi: 10.1039/C6RA17000E
[85]
Yin D, Ren H, Li C, Liu J, Liang C. Chinese J. Catal., 2018, 392, 319.
[86]
Manyar H G, Yang B, Daly H, Moor H, McMonagle S, Tao Y, Yadav G D, Goguet A, Hu P, Hardacre C. ChemCatChem, 2013, 5(2): 506.

doi: 10.1002/cctc.v5.2
[87]
O’Brien C P, Dostert K H, Schauermann S, Freund H J. Chem., 2016, 22(44): 15856.
[88]
Wang F, Bi Y S, Hu K, Wei X J. Chem., 2020, 26(21): 4874.
[89]
Wang F, Zhang Z N, Wei X J, Fang Q H, Jiang X M. Appl. Catal. A Gen., 2017, 543: 196.

doi: 10.1016/j.apcata.2017.06.039
[90]
Aydin C, Lu J, Browning N D, Gates B C. Angew. Chem. Int. Ed., 2012, 51(24): 5929.

doi: 10.1002/anie.v51.24
[91]
Guo M Y, Du Y Z, Zhang M W, Wang L, Zhang X W, Li G Z. ACS Sustainable Chem. Eng., 2022, 10(23): 7485.

doi: 10.1021/acssuschemeng.2c00098
[92]
Liu C, Zhu P, Wang J S, Liu H O, Zhang X F. Chem. Eng. J., 2022, 446: 137064.

doi: 10.1016/j.cej.2022.137064
[93]
Zhou A W, Dou Y B, Zhou J, Li J R. ChemSusChem, 2020, 13(1): 205.

doi: 10.1002/cssc.v13.1
[94]
Liu Q L, Liu Q, Chen Y R, Li Y L, Su H, Liu Q H, Li G Q. Chin. Chemical Lett., 2022, 33(1): 374.

doi: 10.1016/j.cclet.2021.06.047
[95]
Geng R Y, Jia H H, Xie Y W, Pan D H, Yu F, Fan B B. Microporous Mesoporous Mater., 2022, 338: 111968.

doi: 10.1016/j.micromeso.2022.111968
[96]
Yuan K, Song T Q, Wang D W, Zhang X T, Gao X, Zou Y, Dong H L, Tang Z Y, Hu W P. Angew. Chem. Int. Ed., 2018, 57(20): 5708.

doi: 10.1002/anie.v57.20
[97]
Liu Q L, Li Y L, Fan Y N, Su C Y, Li G Q. J. Mater. Chem. A, 2020, 8(22): 11442.

doi: 10.1039/D0TA01845G
[98]
Zhang B Z, Li M Y, Lei H J, Chen J L, Wang S H, Chen C. Appl. Surf. Sci., 2022, 599: 153899.

doi: 10.1016/j.apsusc.2022.153899
[99]
Lan X C, Wang T F, Li X D, Huang N, Wang J F. Catal. Sci. Technol., 2016, 6(21): 7703.

doi: 10.1039/C6CY01600F
[100]
Patil K N, Manikanta P, Srinivasappa P M, Jadhav A H, Nagaraja B M. J. Environ. Chem. Eng., 2022, 10(5): 108208.

doi: 10.1016/j.jece.2022.108208
[101]
Cui H S, Liu S H, Lv Y, Wu S T, Wang L P, Hao F, Liu P L, Xiong W, Luo H A. J. Catal., 2020, 381: 468.

doi: 10.1016/j.jcat.2019.11.024
[102]
Tao R, Shan B Q, Sun H D, Ding M, Xue Q S, Jiang J G, Wu P, Zhang K. J. Phys. Chem. C, 2021, 125(24): 13304.

doi: 10.1021/acs.jpcc.1c03026
[103]
Zahid M, Ismail A, Sohail M, Zhu Y J. J. Colloid Interface Sci., 2022, 628: 141.

doi: 10.1016/j.jcis.2022.08.067
[104]
Vu K B, Bukhryakov K V, Anjum D H, Rodionov V O. ACS Catal., 2015, 5(4): 2529.

doi: 10.1021/acscatal.5b00262
[105]
Sole R, Buranello C, Bardella N, Di Michele A, Paganelli S, Beghetto V. Catalysts, 2021, 11(8): 914.

doi: 10.3390/catal11080914
[106]
Tan Y, Liu X Y, Zhang L L, Liu F, Wang A Q, Zhang T. Chin. J. Catal., 2021, 42(3): 470.
[107]
Ye Y W, Hu Y M, Zheng W B, Jia A P, Wang Y, Lu J Q. Chin. J. Catal., 2023, 47: 265.
[108]
Schröder C, Baumann A K, Schmidt M C, Smyczek J, Haugg P A, Graap O C, Schauermann S. J. Phys. Chem. C, 2022, 126(10): 4907.

doi: 10.1021/acs.jpcc.2c00987
[109]
Farrag M. Microporous Mesoporous Mater., 2018, 257: 110.

doi: 10.1016/j.micromeso.2017.08.022
[110]
Murata K, Ogura K, Ohyama J, Sawabe K, Yamamoto Y, Arai S, Satsuma A. ACS Appl. Mater. Interfaces, 2020, 12(23): 26002.

doi: 10.1021/acsami.0c05938
[111]
Zhang Y B, Ettelaie R, Binks B P, Yang H Q. ACS Catal., 2021, 11(3): 1485.

doi: 10.1021/acscatal.0c04604
[112]
Yamada H, Fujimura M, Goto S. J. Alloys Compd., 2004, 375(1-2): 202.

doi: 10.1016/j.jallcom.2003.11.154
[113]
Siddqui N, Sarkar B, Pendem C, Khatun R, Sivakumar Konthala L N, Sasaki T, Bordoloi A, Bal R. Catal. Sci. Technol., 2017, 7(13): 2828.

doi: 10.1039/C7CY00989E
[114]
Luo N H, Liao J H, Ouyang L, Wen H L, Liu J T, Tang W P, Luo R S. Organometallics, 2019, 38(15): 3025.

doi: 10.1021/acs.organomet.9b00353
[115]
Cai W M, Yang J, Sun H F, Wang Y B, Ling T, Guo X F, Peng L M, Ding W P. Chin. J. Catal., 2017, 38(8): 1330.
[116]
Zhou Y Y, Li Z H, Liu Y B, Huo J, Chen C, Li Q L, Niu S Y, Wang S Y. ChemSusChem, 2020, 13(7): 1746.

doi: 10.1002/cssc.v13.7
[117]
Zhou Y Y, Chen C, Li Q L, Liu Y B, Wei T, Liu Y Z, Zeng Z B, Bradshaw D, Zhang B, Huo J. Appl. Catal. B Environ., 2022, 311: 121348.

doi: 10.1016/j.apcatb.2022.121348
[118]
Wang H J, Liu B Y, Liu F, Wang Y N, Lan X C, Wang S Q, Ali B, Wang T F. ACS Sustainable Chem. Eng., 2020, 8(22): 8195.

doi: 10.1021/acssuschemeng.0c00942
[119]
Farrar-Tobar R A, Wei Z H, Jiao H J, Hinze S, De Vries J G. Chem., 2018, 24(11): 2725.
[120]
Li Y, Cheng H Y, Lin W W, Zhang C, Wu Q F, Zhao F Y, Arai M. Catal. Sci. Technol., 2018, 8(14): 3580.

doi: 10.1039/C8CY00943K
[121]
Leng F Q, Gerber I C, Axet M R, Serp P. Comptes Rendus Chim., 2017, 21(3/4): 346.

doi: 10.1016/j.crci.2017.04.001
[122]
Daimon A, Kamitanaka T, Kishida N, Matsuda T, Harada T. J. Supercrit. Fluids, 2006, 37(2): 215.

doi: 10.1016/j.supflu.2005.09.001
[123]
Chen Y Q, Liu W, Yin P, Ju M H, Wang J, Yang W Y, Yang Y S, Shen C. J. Catal., 2021, 393: 1.

doi: 10.1016/j.jcat.2020.11.019
[124]
Deng Y C, Gao R, Lin L L, Liu T, Wen X D, Wang S, Ma D. J. Am. Chem. Soc., 2018, 140(43): 14481.

doi: 10.1021/jacs.8b09310
[125]
Wang J, Lv C Q, Liu J H, Ren R R, Wang G C. Int. J. Hydrog. Energy, 2021, 46(2): 1592.
[126]
Joubert J, Delbecq F. Organometallics, 2006, 25(4): 854.

doi: 10.1021/om050782a
[127]
Lv Y, Han M M, Gong W B, Wang D D, Chen C, Wang G Z, Zhang H M, Zhao H J. Angew. Chem. Int. Ed., 2020, 59(52): 23521.

doi: 10.1002/anie.v59.52
[128]
Li W J, Wang Y H, Chen P, Zeng M, Jiang J Y, Jin Z L. Catal. Sci. Technol., 2016, 6(20): 7386.

doi: 10.1039/C6CY01137C
[129]
Guo H, Li Y C, Zuo C C, Zheng Y X, Guo X P, Hao J G, Huang H F, Wang M, Ge T T. AlChE. J., 2022, 68(7): e17683.

doi: 10.1002/aic.v68.7
[130]
Xin H Y, Li M N, Chen L, Zhao C, Wu P, Li X H. Catal. Sci. Technol., 2023, 13(5): 1488.

doi: 10.1039/D2CY01868C
[131]
Engelhardt C M, Kennedy R M, Enterkin J A, Poeppelmeier K R, Ellis D E, Marshall C L, Stair P C. ChemCatChem, 2018, 10(3): 632.

doi: 10.1002/cctc.v10.3
[132]
Loffreda D, Delbecq F, Vigné F, Sautet P. Angew. Chem. Int. Ed., 2005, 44(33): 5279.

doi: 10.1002/anie.v44:33
[133]
Tuokko S, Pihko P M, Honkala K. Angew. Chem. Int. Ed., 2016, 55(5): 1670.

doi: 10.1002/anie.v55.5
[134]
Murillo L E, Menning C A, Chen J G. J. Catal., 2009, 268(2): 335.

doi: 10.1016/j.jcat.2009.10.003
[135]
Liu Q L, Wu J Y, Kang J W, Liu Q, Liao P S, Li G Q. Nanoscale, 2022, 14(41): 15462.

doi: 10.1039/D2NR03608H
[136]
Jiang J, Xia S, Ni Z, Zhang L. Chem. J. Chinese U., 2016, 374: 693.
(蒋军辉, 夏盛杰, 倪哲明, 张连阳. 高等学校化学学报, 2016, 374:693.)
[137]
Cao Y, Jiang J, Ni Z, Xia S, Qian M, Xue J. Chem. J. Chinese U., 2016, 377:1342.
(曹勇勇, 蒋军辉, 倪哲明, 夏盛杰, 钱梦丹, 薛继龙. 高等学校化学学报, 2016, 377: 1342.)
[138]
Chang S S, Meng S G, Fu X L, Zhang S J, Zheng X Z, Chen S F. Chemistry Select, 2019, 4(7): 2018.
[139]
Li L C, Wang W, Wang X L, Zhang L. J. Mol. Model., 2016, 22(8): 186.

doi: 10.1007/s00894-016-3039-4
[140]
Li L C, Wei W, Wang W, Wang X L, Zhang L, Tian A M. RSC Adv., 2016, 6(91): 88277.

doi: 10.1039/C6RA16150B
[141]
Yang X F, Wang A Q, Wang X D, Zhang T, Han K L, Li J. J. Phys. Chem. C, 2009, 113(49): 20918.

doi: 10.1021/jp905687g
[142]
Delbecq F, Sautet P. J. Catal., 2003, 220:115.

doi: 10.1016/S0021-9517(03)00249-5
[143]
Jiang Z F, Wan W M, Lin Z X, Xie J M, Chen J G. ACS Catal., 2017, 7(9): 5758.

doi: 10.1021/acscatal.7b01682
[144]
Komal N P, Manikanta P, Puneethkumar M S, Arvind H J, Bhari M N. J. Environ. Chem. Eng., 2023, 11(1): 109168.

doi: 10.1016/j.jece.2022.109168
[145]
Liu W, Jiang Y D, Dostert K H, O’Brien C P, Riedel W, Savara A, Schauermann S, Tkatchenko A. Sci. Adv., 2017, 3(7): e1700939.

doi: 10.1126/sciadv.1700939
[146]
Khan M, Joshi S, Ranade V. Chem. Eng. J., 2019, 377: 120512.

doi: 10.1016/j.cej.2018.11.210
[147]
Wang K L, Yang B.. Catal. Sci. Technol., 2017, 7: 4024.

doi: 10.1039/C7CY01500C
[148]
Ning X, Xu Y M, Wu A Q, Tang C, Jia A P, Luo M F, Lu J Q. Appl. Surf. Sci., 2019, 463: 463.

doi: 10.1016/j.apsusc.2018.08.230
[149]
Mäki-Arvela P, Denecheau A, Alho K, Wärnå J, Eränen K R, Salmi T, Murzin D Y. Chem. Eng. J., 2007, 134(1-3): 268.

doi: 10.1016/j.cej.2007.03.034
[150]
Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E C H. Science, 2012, 335(6073): 1209.

doi: 10.1126/science.1215864
[151]
Cao Y Q, Guerrero-Sańchez J, Lee I, Zhou X G, Takeuchi N, Zaera F. ACS Catal., 2020, 10(5): 3431.

doi: 10.1021/acscatal.9b05407
[152]
Luo Q Q, Wang T, Beller M, Jiao H J. J. Phys. Chem. C, 2013, 117(24): 12715.

doi: 10.1021/jp403972b
[153]
Ji X W, Niu X Y, Li B, Han Q, Yuan F L, Zaera F, Zhu Y J, Fu H G. ChemCatChem, 2014, 6(11): 3246.

doi: 10.1002/cctc.v6.11
[154]
Zhang Y, Chen C, Gong W B, Song J Y, Su Y P, Zhang H M, Wang G Z, Zhao H J. RSC Adv., 2017, 7(34): 21107.

doi: 10.1039/C7RA02898A
[155]
Breen J P, Burch R, Gomez-Lopez J, Griffin K, Hayes M. Appl. Catal., A., 2004, 268: 267.

doi: 10.1016/j.apcata.2004.04.002
[156]
Wang D, Zhu Y J, Tian C G, Wang L, Zhou W, Dong Y L, Yan H J, Fu H G. ChemCatChem, 2016, 8(9): 1718.

doi: 10.1002/cctc.v8.9
[157]
Zhang W L, Shi W X, Ji W L, Wu H B, Gu Z D, Wang P, Li X H, Qin P S, Zhang J, Fan Y, Wu T Y, Fu Y, Zhang W N, Huo F W. ACS Catal., 2020, 10(10): 5805.

doi: 10.1021/acscatal.0c00682
[158]
Dong Y, Zaera F. J. Phys. Chem. Lett., 2018, 9(6): 1301.

doi: 10.1021/acs.jpclett.8b00173
[159]
Lan X C, Wang T F. ACS Catal., 2020, 10(4): 2764.

doi: 10.1021/acscatal.9b04331
[1] Wenbo Zhang, Jianing Wang, Linfeng Wei, Hua Jin, Yan Bao, Jianzhong Ma. Preparation and Application of Functional Polymer-Based Electromagnetic Shielding Materials [J]. Progress in Chemistry, 2023, 35(7): 1065-1076.
[2] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[3] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[4] Xin Yan, Yi-Xian Li, Yue-Mei Jia, Chu-Yi Yu. Glycosylated Iminosugars: Isolation, Synthesis and Biological Activities [J]. Progress in Chemistry, 2019, 31(11): 1472-1508.
[5] Yixian Li, Yuemei Jia, Chuyi Yu. Synthesis and Glycosidase Inhibitory Activities of Fluorinated Iminosugars [J]. Progress in Chemistry, 2018, 30(5): 586-600.
[6] Tianzhi Dai, Dequn Sun. Research of Anti-TB Active Compounds [J]. Progress in Chemistry, 2018, 30(11): 1784-1802.
[7] Benzhan Zhu, Linna Xie, Chen Shen, Huiying Gao, Liya Zhu, Li Mao. Chemiluminescence Generation from Haloaromatic Pollutants:Structure-Activity Relationship, Molecular Mechanism and Potential Applications [J]. Progress in Chemistry, 2017, 29(9): 930-942.
[8] Hu Daihua, Chen Wang, Wang Yongji. Synthesis and Structure-Activity Relationship of Active Vitamin D3 Analogues [J]. Progress in Chemistry, 2016, 28(6): 839-859.
[9] Guo Jian, He Yun, Ye Xin-Shan. Design and Discovery of Sialyltransferase Inhibitors [J]. Progress in Chemistry, 2016, 28(11): 1712-1720.
[10] Zhao Lijun, Lei Ming. Computational Chemical Studies on Transthyretin [J]. Progress in Chemistry, 2014, 26(01): 193-202.
[11] Zhao Yongsheng, Zhang Xiangping, Zhao Jihong, Zhang Hongzhong, Kang Xuejing, Dong Feng. Research of QSPR/QSAR for Ionic Liquids [J]. Progress in Chemistry, 2012, 24(07): 1236-1244.
[12] Chen Ping, Xie Guanqun, Luo Mengfei. Catalysts for Vapor-Phase Selective Hydrogenation of Crotonaldehyde to Crotyl Alcohol [J]. Progress in Chemistry, 2012, 24(01): 17-30.
[13] Wang Zhaoxiang, Chen Liquan, Huang Xuejie. Structural Design and Modification of Cathode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 284-301.
[14] . Structures and Mechanism of Action for Complex Ⅲ Inhibiting-Fungicides [J]. Progress in Chemistry, 2010, 22(09): 1852-1868.
[15] Li Zheng Li Yuanchao. Structural Diversity and Structure-Activity Relationship —— New Drug Research and Development of Tripterygium wilfordii Hook.f. [J]. Progress in Chemistry, 2009, 21(12): 2483-2491.