中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (3): 367-375 DOI: 10.7536/PC230718 Previous Articles   Next Articles

• Review •

Application of MOFs in Catalytic Conversion of Organic Molecules

Xichen Li1,2, Zheng Li1,2, Can Peng1,2, Chen Qian1,2, Yufei Han1,2, Tao Zhang1,2()   

  1. 1 Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
    2 Nuclear Medicine Clinical Transformation Center, Nanjing Medical University, Nanjing 210029, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: zhangtaocjh@njmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(12275135); Jiangsu Province University Natural Science Research Project(21KJB350015); Nanjing Medical University Talent Introduction Research Start-up Fund(NMUR20210003); Key Project of Connotation Construction of Nanjing Medical University and Science and Technology Development Fund of Nanjing Medical University(NMUB20210014); Jiangsu Province University Natural Science Research Project(22KJB350008)
Richhtml ( 4 ) PDF ( 29 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic framework compounds (MOF), also known as porous coordination polymers, are a new type of organic-inorganic hybrid porous materials which are self-assembled from organic ligands and metal ions, and are an important part of nanomaterials. Compared to other porous materials, MOFs have a large surface area, high porosity and adjustable structure and properties, making them have a good application prospect in heterogeneous catalysis. In this paper, the background of MOFs catalysis is briefly reviewed, followed by a review and prospect of the recent progress of MOFs in catalytic conversion reactions of organic molecules, in order to provide a reference for the design and development of organic reactions catalyzed by MOFs.

Contents

1 Introduction

2 Knoevenagel Condensation catalyzed by MOFs

3 Suzuki-Miyaura Reaction catalyzed by MOFs

4 Mizoroki-Heck Reaction catalyzed by MOFs

5 Aldol Condensation catalyzed by MOFs

6 A3-Coupling Reaction catalyzed by MOFs

7 Cycloaddition of CO2 catalyzed by MOFs

8 Oxidation and reduction of unsaturated hydrocarbons catalyzed by MOFs

9 Conclusion and outlook

Fig. 1 Diagram of Knoevenagel condensation reaction
Fig. 2 Diagram of UiO-66 and its modifications[13]
Fig. 3 Diagram of Suzuki-Miyaura reaction
Fig. 4 Diagram of UiO-66 (L3) [21]
Fig. 5 Diagram of Mizoroki-Heck reaction
Fig. 6 Diagram of Pd@Co3O4 [31]
Fig. 7 Diagram of Aldol condensation reaction
Fig. 8 Diagram of A3-Coupling reaction
Fig. 9 Diagram of Au/MOF-199[44]
Fig. 10 Diagram of the ring-forming reaction of carbon dioxide and epoxy compounds
Fig. 11 Diagram of ZnO@NPC-Ox-700[51]
Fig. 12 Diagram of oxidation of unsaturated hydrocarbons
Fig. 13 Diagram of Zn1Co1-ZIF[55]
Fig. 14 Diagram of the reduction of unsaturated hydrocarbons
[1]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): e1230444.
[2]
Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423(6941): 705.

doi: 10.1038/nature01650
[3]
Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38(5): 1450.

doi: 10.1039/b807080f
[4]
Fujita M, Kwon Y J, Washizu S, Ogura K. J. Am. Chem. Soc., 1994, 116(3): 1151.

doi: 10.1021/ja00082a055
[5]
Uchikura T, Tsubono K, Hara Y, Akiyama T. J. Org. Chem., 2022, 87(22): 15499.

doi: 10.1021/acs.joc.2c02032
[6]
Patel D, Trivedi K A, Srivastava H, Kane S R, Modi C K. Inorg. Chem. Commun., 2022, 136: 109175.

doi: 10.1016/j.inoche.2021.109175
[7]
Chirik P J. Acc. Chem. Res., 2015, 48(6): 1687.

doi: 10.1021/acs.accounts.5b00134
[8]
Li Q Y, Ji S F, Hao Z M. Prog. Chem., 2012, 24: 1506.
(李庆远, 季生福, 郝志谋. 化学进展, 2012, 24: 1506.).
[9]
Liu B, Jie S Y, Li B G. Prog. Chem., 2013, 25: 36.
(刘兵, 介素云, 李伯耿. 化学进展, 2012, 25: 36.).
[10]
Gao F, Yan R H, Shu Y, Cao Q B, Zhang L. RSC Adv., 2022, 12(16): 10114.

doi: 10.1039/D2RA01175A
[11]
Opanasenko M, Dhakshinamoorthy A, Shamzhy M, Nachtigall P, Horáček M, Garcia H, Čejka J. Catal. Sci. Technol., 2013, 3(2): 500.

doi: 10.1039/C2CY20586F
[12]
Opanasenko M, Dhakshinamoorthy A, Čejka J, Garcia H. ChemCatChem, 2013, 5(6): 1553.

doi: 10.1002/cctc.v5.6
[13]
Luan Y, Qi Y, Gao H Y, Andriamitantsoa R S, Zheng N N, Wang G. J. Mater. Chem. A, 2015, 3(33): 17320.

doi: 10.1039/C5TA00816F
[14]
Hwang Y, Hong D Y, Chang J S, Jhung S, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Férey G. Angew. Chem. Int. Ed., 2008, 47(22): 4144.

doi: 10.1002/anie.v47:22
[15]
Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi O M. Science, 2002, 295(5554): 469.

doi: 10.1126/science.1067208
[16]
Sen R, Saha D, Koner S. Chem., 2012, 18(19): 5979.
[17]
Zhang Y, Wang Y X, Liu L, Wei N, Gao M L, Zhao D, Han Z B. Inorg. Chem., 2018, 57(4): 2193.

doi: 10.1021/acs.inorgchem.7b03084
[18]
He Z M, Zhao X, Pan X B, Li Y Y, Wang X X, Xu H T, Xu Z L. RSC Adv., 2019, 9(43): 25170.

doi: 10.1039/C9RA04499J
[19]
Jiang W L, Fu Q J, Yao B J, Ding L G, Liu C X, Dong Y B. ACS Appl. Mater. Interfaces, 2017, 9(41): 36438.

doi: 10.1021/acsami.7b12166
[20]
Fihri A, Bouhrara M, Nekoueishahraki B, Basset J M, Polshettiwar V. Chem. Soc. Rev., 2011, 40(10): 5181.

doi: 10.1039/c1cs15079k
[21]
Elumalai P, Mamlouk H, Yiming W, Feng L, Yuan S, Zhou H C, Madrahimov S T. ACS Appl. Mater. Interfaces, 2018, 10(48): 41431.

doi: 10.1021/acsami.8b16136
[22]
Ma R, Yang P B, Ma Y, Bian F L. ChemCatChem, 2018, 10(6): 1446.

doi: 10.1002/cctc.v10.6
[23]
Xiong G, Chen X L, You L X, Ren B Y, Ding F, Dragutan I, Dragutan V, Sun Y G. J. Catal., 2018, 361: 116.

doi: 10.1016/j.jcat.2018.02.026
[24]
Chen W M, Cai P Y, Elumalai P, Zhang P, Feng L, Al-Rawashdeh M, Madrahimov S T, Zhou H C. ACS Appl. Mater. Interfaces, 2021, 13(44): 51849.

doi: 10.1021/acsami.1c03607
[25]
Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn., 1971, 44(2): 581.

doi: 10.1246/bcsj.44.581
[26]
Heck R F, Nolley J P Jr. J. Org. Chem., 1972, 37(14): 2320.

doi: 10.1021/jo00979a024
[27]
Wang M L, Xu H, Li H Y, Ma B, Wang Z Y, Wang X, Dai H X. Org. Lett., 2021, 23: 2147.

doi: 10.1021/acs.orglett.1c00296
[28]
Phan N  , Van Der Sluys M, Jones C. Adv. Synth. Catal., 2006, 348(6): 609.

doi: 10.1002/(ISSN)1615-4169
[29]
Shaikh M N, Aziz M A, Helal A, Kalanthoden A N, Yamani Z H. ChemistrySelect, 2017, 2(28): 9052.

doi: 10.1002/slct.201701270
[30]
Zhang H, Zhou M H, Xiong L F, He Z D, Wang T Q, Xu Y, Huang K. J. Phys. Chem. C, 2017, 121(23): 12771.

doi: 10.1021/acs.jpcc.7b02425
[31]
Zhou A W, Guo R M, Zhou J, Dou Y B, Chen Y, Li J R. ACS Sustainable Chem. Eng., 2018, 6(2): 2103.

doi: 10.1021/acssuschemeng.7b03525
[32]
Wei Y L, Li Y, Chen Y Q, Dong Y, Yao J J, Han X Y, Dong Y B. Inorg. Chem., 2018, 57(8): 4379.

doi: 10.1021/acs.inorgchem.7b03271
[33]
Yuan N, Pascanu V, Huang Z H, Valiente A, Heidenreich N, Leubner S, Inge A K, Gaar J, Stock N, Persson I, Martín-Matute B, Zou X D. J. Am. Chem. Soc., 2018, 140(26): 8206.

doi: 10.1021/jacs.8b03505
[34]
Li X H, Tjiptoputro A K, Ding J, Xue J M, Zhu Y H. Catal. Today, 2017, 279: 77.

doi: 10.1016/j.cattod.2016.03.044
[35]
Ishida T, Koga H, Okumura M, Haruta M. Chem. Rec., 2016, 16(5): 2278.

doi: 10.1002/tcr.v16.5
[36]
Yazdi A, Abo Markeb A, Garzón-Tovar L, Patarroyo J, Moral-Vico J, Alonso A, Sánchez A, Bastus N, Imaz I, Font X, Puntes V, Maspoch D. J. Mater. Chem. A, 2017, 5(27): 13966.

doi: 10.1039/C7TA03006A
[37]
Muir S S, Yao X D. Int. J. Hydrog. Energy, 2011, 36(10): 5983.
[38]
Rossin A, Peruzzini M. Chem. Rev., 2016, 116(15): 8848.

doi: 10.1021/acs.chemrev.6b00043
[39]
Saha D, Maity T, Das S, Koner S. Dalton Trans., 2013, 42(38): 13912.

doi: 10.1039/c3dt51509e
[40]
Maity T, Saha D, Das S, Koner S. Eur. J. Inorg. Chem., 2012, 2012(30): 4914.
[41]
Nasrollahzadeh M, Sajjadi M, Ghorbannezhad F, Sajadi S M. Chem. Rec., 2018, 18(10): 1409.

doi: 10.1002/tcr.v18.10
[42]
Kassymova M, de Mahieu A, Chaemchuen S, Demeyere P, Mousavi B, Zhuiykov S, Yusubov M S, Verpoort F. Catal. Sci. Technol., 2018, 8(16): 4129.

doi: 10.1039/C8CY00662H
[43]
Li D, Dai X P, Zhang X, Zhuo H Y, Jiang Y, Yu Y B, Zhang P F, Huang X L, Wang H. J. Catal., 2017, 348: 276.

doi: 10.1016/j.jcat.2017.02.013
[44]
Jiang Y, Zhang X, Dai X P, Zhang W, Sheng Q, Zhuo H Y, Xiao Y, Wang H. Nano Res., 2017, 10(3): 876.

doi: 10.1007/s12274-016-1341-1
[45]
Yang Q H, Jiang H L. Small Meth., 2018, 2(12): 1800216.

doi: 10.1002/smtd.v2.12
[46]
Liu L L, Tai X S, Zhou X J, Liu L J. Chem. Res. Chin. Univ., 2023, 15(6): 8263.
[47]
Chen M, Liu X Y, Yang Y Y, Xu W, Chen K C, Luo R C. ACS Appl. Mater. Interfaces, 2023, 15(6): 8263.

doi: 10.1021/acsami.2c22824
[48]
Dibenedetto A, Nocito F. ChemSusChem, 2020, 13(23): 6219.

doi: 10.1002/cssc.v13.23
[49]
Liu X Y, Yang Y Y, Chen M, Xu W, Chen K C, Luo R C. ACS Appl. Mater. Interfaces, 2023, 15(1): 1085.

doi: 10.1021/acsami.2c18283
[50]
Kessaratikoon T, Theerathanagorn T, Crespy D, D’Elia V. J. Org. Chem., 2023, 88(8): 4894.

doi: 10.1021/acs.joc.2c02447
[51]
Hou S L, Dong J, Jiang X L, Jiao Z H, Zhao B. Angew. Chem. Int. Ed., 2019, 58(2): 577.

doi: 10.1002/anie.v58.2
[52]
Ding M L, Chen S, Liu X Q, Sun L B, Lu J L, Jiang H L. ChemSusChem, 2017, 10(9): 1898.

doi: 10.1002/cssc.v10.9
[53]
Sun L L, Yun Y P, Sheng H T, Du Y X, Ding Y M, Wu P, Li P, Zhu M Z. J. Mater. Chem. A, 2018, 6(31): 15371.

doi: 10.1039/C8TA04667K
[54]
Wu W Q, Jiang H F. Acc. Chem. Res., 2012, 45(10): 1736.

doi: 10.1021/ar3000508
[55]
Brown K, Zolezzi S, Aguirre P, Venegas-Yazigi D, Paredes-García V, Baggio R, Novak M A, Spodine E. Dalton Trans., 2009,(8): 1422.
[56]
Hui J F, Chu H M, Zhang W L, Shen Y, Chen W Z, Hu Y, Liu W, Gao C, Guo S H, Xiao G W, Li S, Fu Y, Fan D D, Zhang W N, Huo F W. Nanoscale, 2018, 10(18): 8772.

doi: 10.1039/C8NR01336E
[57]
Zhang P, Chen C J, Kang X C, Zhang L J, Wu C Y, Zhang J L, Han B X. Chem. Sci., 2018, 9(5): 1339.

doi: 10.1039/C7SC04269H
[58]
Limvorapitux R, Chou L Y, Young A P, Tsung C K, Nguyen S T. ACS Catal., 2017, 7(10): 6691.

doi: 10.1021/acscatal.6b03632
[59]
Fan S, Dong W J, Huang X B, Gao H Y, Wang J J, Jin Z K, Tang J, Wang G. ACS Catal., 2017, 7(1): 243.

doi: 10.1021/acscatal.6b02614
[60]
Lin L, Liu H O, Zhang X F. Appl. Surf. Sci., 2018, 433: 602.

doi: 10.1016/j.apsusc.2017.10.047
[61]
Hu M Z, Zhao S, Liu S J, Chen C, Chen W X, Zhu W, Liang C, Cheong W C, Wang Y, Yu Y, Peng Q, Zhou K B, Li J, Li Y D. Adv. Mater., 2018, 30(33): 1801878.

doi: 10.1002/adma.v30.33
[62]
Ding S, Zhang C, Liu Y, Jiang H, Xing W, Chen R. J. Ind. Eng. Chem., 2017, 46: 258.
[63]
Nakatsuka K, Yoshii T, Kuwahara Y, Mori K, Yamashita H. Chem., 2018, 24(4): 898.
[1] Xiaoyu Wang, Ruiyi Wang, Xiangpeng Kong, Yulan Niu, Zhanfeng Zheng. Catalytic Conversion of Hydroxyl Compounds : Conversion of Phenols and Alcohols to Ethers and Esters [J]. Progress in Chemistry, 2024, 36(3): 335-356.
[2] Shun Lu, Yuan Liu, Hong Liu. Conductive Phthalocyanine-Based Metal-Organic Frameworks for Efficient Electrocatalysis [J]. Progress in Chemistry, 2024, 36(3): 285-296.
[3] Tao Peng, Qianqian Chai, Chuanqiang Li, Xuxu Zheng, Lingjuan Li. Application of MOFs-Derived Metal Oxides in Catalytic Total Oxidation of VOCs [J]. Progress in Chemistry, 2024, 36(1): 81-94.
[4] Wenhao Luo, Rui Yuan, Jinyuan Sun, Lianqun Zhou, Xiaohe Luo, Yang Luo. Metal-Organic Framework-Based Nanozymes for Clinical Applications [J]. Progress in Chemistry, 2023, 35(9): 1389-1398.
[5] Hao Zhang, Yanhui Wu. Preparation and Modification of MOF-Polymer Mixed Matrix Membrane and its Application in Pervaporation [J]. Progress in Chemistry, 2023, 35(8): 1154-1167.
[6] Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang, Fengshou Xiao. Condensed Matter Chemistry in Catalytic Conversion of Small Molecules [J]. Progress in Chemistry, 2023, 35(6): 861-885.
[7] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[8] Haotian Ma, Rujin Tian, Zhongsheng Wen. Metal-Organic Frameworks and Their Derivative Nano Anode Materials [J]. Progress in Chemistry, 2023, 35(12): 1807-1846.
[9] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[10] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[11] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[12] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[13] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[14] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[15] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.