中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (3): 448-462 DOI: 10.7536/PC230713 Previous Articles   

• Review •

Synthesis of Multi-Cyclic Hydrocarbon High-Density Aviation Fuels from Biomass

Chongya Kong1, Fangfang Tan4(), Yizhuo Wang5, Hong Wang5,6, Zhanchao Li1,2,3()   

  1. 1 School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
    2 Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Zigong 643000, China
    3 Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, Zigong 643000, China
    4 College of Chemistry and Materials Science, Weinan Normal University, Weinan 714099, China
    5 Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
    6 State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710054, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: pp19881208@126.com (Zhanchao Li);tanfangfang@yau.edu.cn(Fangfang Tan)
Richhtml ( 12 ) PDF ( 33 ) Cited
Export

EndNote

Ris

BibTeX

High-density aviation fuels are a type of hydrocarbon which are synthesized to improve the flight performance of aerospace vehicles. They have the advantages of high density, high volumetric net heat of combustion value, and can effectively improve the flight performance of vehicles such as range, speed, load, etc. With the decrease of global fossil resources and the continuous deterioration of the ecological environment, the synthesis of high-density aviation fuels from biomass has become a research hotspot. In this review, the research progress in synthesis of multi-cyclic hydrocarbon high-density aviation fuels from platform molecules and derivatives in recent years is discussed. The common C-C bond coupling methods for constructing the multi-cyclic structure are introduced, including aldol condensation reaction, alkylation reaction, aldol-hydrodeoxygenation-alkylation reaction, Diels-Alder reaction, photoinduced 2+2 cycloaddition, rearrangement reaction. The new progress in synthesis of petroleum based high-density aviation fuels or multi-cyclic hydrocarbon mixed fuels from platform molecules is listed. The properties of a large number of multi-cyclic hydrocarbon high-density aviation fuels are summarized, and the influence of molecular structure and composition on fuel properties are discussed. Introduction of the appropriate substituent groups and synthesis of multi-component fuels are the main methods to improve the comprehensive properties of fuels. Synthesis of petroleum-based high-density fuels using platform molecules is another strategy to improve the properties of fuels. Finally, the development trend of synthesis of multi-cyclic hydrocarbon high-density aviation fuels using platform molecules from biomass is prospected.

Contents

1 Introduction

2 Aldol condensation reaction

3 Alkylation and Aldol-Hydrodeoxygenation- Alkylation reaction

4 Diels-Alder reaction

5 Photoinduced 2+2 cycloaddition reaction

6 Rearrangement reaction

7 Summary of fuel properties

8 Conclusion and outlook

Fig.1 The platform molecules and derivatives from biomass
Fig. 2 Synthesis of multi-cyclopentane from cyclopentanone[23?~25]
Fig. 3 Synthesis of multi-component cycloalkane from cyclopentanone and cyclohexanone[26]
Fig. 4 Synthesis of multi-cycloalkane from cyclopentanone and vanillin[27]
Fig. 5 Synthesis of multi-cyclopentane mixture from cyclopentanone and vanillin[28]
Fig. 6 Synthesis of methyl substituted dicyclopentane and tricyclopentane from 2, 5-hexanedione[29]
Fig.7 Synthesis of multi-methyl substituted bicyclohexane from isophorone[31]
Fig. 8 Synthesis of high-density fuel from β-pinene dimerization catalyzed by Nafion[32]
Fig. 9 Synthesis of ethyl substituted dicyclohexylmethane from benzylalcohol and 4-ethylphenol[34]
Fig. 10 Synthesis of multi-cycloalkane mixture from phenol and cyclopentanol[36]
Fig. 11 Synthesis of multi-cycloalkane mixture from ligin oil and cyclopentanol[37]
Fig. 12 Synthesis of perfluorofluorene from 2- benzylphenol[38]
Fig. 13 Synthesis of methylperfluorofluorene from methyl- benzaldehyde and cyclohexanone[39]
Fig. 14 Synthesis of dimethyl substituted octahydro-indones from methylbenzaldehyde and acetone[40]
Fig. 15 Synthesis of alkyl substituted octahydro-indones from alkylbenzaldehyde and methyl isobutyl ketone[42]
Fig. 16 Synthesis of the mixture of dicyclohexylmethane and dodecahydroflurene from cyclohexanone and vanillin[43]
Fig. 17 Synthesis of spiro-compounds by Mannich-Diels- Alder reaction[44]
Fig. 18 Synthesis of high-density fuels from 2-methylfuran and dicyclopentadiene by Diels-Alder reaction[45]
Fig. 19 Synthesis of RJ-4 from linalool[46]
Fig. 20 Synthesis of JP-10 from furfuryl alcohol[47]
Fig. 21 Synthesis of RJ-4 from 5-methylfurfural[48]
Fig. 22 Synthesis of methyl cyclopentadiene from 2, 5- hexanedione[49?~51]
Fig. 23 Synthesis of cyclopentadiene and methyl cyclopenta- diene from xylose[52]
Fig. 24 Synthesis of dimethyl naphthane from 2-methyl-2, 4-pentanediol and p-quinone[53]
Fig. 25 Synthesis of dimethyl tetradecahydroanthracenes from isophene and p-quinone[54]
Fig. 26 Synthesis of high-density fuels by photo-catalytic 2+2 cycloaddition reaction from isophorone and cyclohexene[57]
Fig. 27 Synthesis of high-density fuels by photocatalytic 2+2 cycloaddition reaction from isophorone and β-pinene[58]
Fig. 28 Synthesis of spiro high-density fuels by pinacol rearrangement[59]
Fig. 29 Synthesis of naphthane by carbocation rearrangement [60]
Fig. 30 Synthesis of dimethylnaphthane by carbocation rearrangement[61]
Fig. 31 Synthesis of methyl and cyclopentyl substituted naphthane by carbocation rearrangement in one-pot[62]
Table 1 Properties of multi-cyclic hydrocarbon high-density aviation fuels from biomass
Feedstock Main component structure Density (20 ℃, g/mL) Freezing point (℃) Heat value (MJ/L) Viscosity (25 ℃, mm2/s) Ref
Cyclopentanone 0.866 -38 36.7 1.62 23
Cyclopentanone and
n-propanol
0.854 < -80 38.12 2.294
(20 ℃)
21
Cyclopentanone and benzyl alcohol 0.906 -58 39.42 9.923
(20 ℃)
21
Cyclopentanone 0.91 4.774 24
Cyclopentanone 0.943 -39.5 25
2, 5-hexanedione 0.88 -48 29
Linalool or
5-methylfurfural
0.94 < -40 39.0 60
(-40 ℃)
46,48
Furfuryl alcohol
or xylose
0.94 -79 39.6 19
(-40 ℃)
47
Cyclopentanone 0.87 -76 37.16 2.12 59
Cyclopentanone and cyclopentadiene 0.952 -53 40.18 5.9 44
Cyclohexanone 0.887 1.2 38.11 3.72 63
Cyclohexanone and dimedone 0.87 -26 37.81 6.589
(20 ℃)
18
Isophorone 0.858 -51 31
Cyclohexanone 0.893 -51 38.41 4.37 59
Dimedone
and cyclohexenone
0.921 -20 39.63 8.624
(20 ℃)
18
2-benzylphenol 0.959 -15 40.1 1752
(20 ℃)
38
4-methylbenzaldehyde and cyclohexanone 0.99 -22 39
2-methylbenzaldehyde and cyclohexanone 0.96 -3 39
Cyclopentanol 0.896 -37 60
Cyclohexanol and methylcyclopentane 0.88 < -51 37 22
(-40 ℃)
61
Isophorone and cyclohexene 0.903 -55 38.77 7.2 57
Isophorone 0.892 -40 38.58 22.4 57
Isophorone and
β-pinenes
0.911 -51 38.67 58
2-benzylphenol 0.876 -20 36.96 5.1
(20 ℃)
38
Benzylalcohol and
4-ethylphenol
0.873 -42 37.27 10.7
(20 ℃)
34
Dimedone, benzaldehyde and acetone 0.883 -70 38.51 49.47
(20 ℃)
18
Dimedone and 5-methylfurfural -55 43.4 MJ/kg 17
2-methylbenzaldehyde and t-butyl methyl ketone 0.895 -43 36.96 5.1
(20 ℃)
42
4-ethylbenzaldehyde and t-butyl methyl ketone 0.902 -50 37.27 10.7
(20 ℃)
42
2-methylbenzaldehyde and acetone 0.91 -44 40
4-ethylbenzaldehyde and acetone 0.94 -41 40
Cyclopentanone and vanillin 0.943 -35 27
Cyclopentanone and vanillin 0.89 < -60 28
2-methylfuran and dicyclopentadiene 0.984 -58 41.96 15.5
(20 ℃)
45
β-Pinenes 0.94 < -30 39.5 4199
(-10 ℃)
32
Cyclohexanone and vanillin 0.95 -17 39.3 43
2-methyl-2,4-pentanediol and p-quinone 0.91 -48∽-27 53
Isophene and p-quinone 45.7 MJ/kg 54
Cyclohexanol and methylcyclopentane 0.90 < -72 38.0 4.3
(20 ℃)
62
Phenol and cyclopentanol 0.88 < -75 37.4 3.5 (20 ℃)
10.4 (-20 ℃)
36
Cyclopentanone and cyclohexanone 0.905 < -50 38.67 7.6
(20 ℃)
26
Lignin oil and cyclopentanol 0.91 < -60 39.0 5.59
(20 ℃)
37
[1]
Zou J J, Zhang X W, Wang L, Mi Z T. Chinese Journal of Energetic Materials, 2007, 15(4): 411.
(邹吉军, 张香文, 王笠, 米镇涛. 含能材料, 2007, 15(4): 411.)
[2]
Zou J J, Guo C, Zhang X W, Wang L, Mi Z T. Journal of Propulsion Technology, 2014, 35(10): 1419.
(邹吉军, 郭成, 张香文, 王笠, 米镇涛. 推进技术, 2014, 35(10): 1419.)
[3]
Zhang X W, Pan L, Wang L, Zou J J. Chem. Eng. Sci., 2018, 180: 95.
[4]
Chung H S, Chen C S H, Kremer R A, Boulton J R, Burdette G W. Energy Fuels, 1999, 13(3): 641.

doi: 10.1021/ef980195k
[5]
Pan L, Deng Q, E X T F, Nie G K, Zhang X W, Zou J J. Progress in Chemistry, 2015, 27(11): 1531.
(潘伦, 邓强, 鄂秀天凤, 聂根阔, 张香文, 邹吉军. 化学进展, 2015, 27(11): 1531.)
[6]
Xie J W, Zhang X W, Xie J J, Nie G K, Pan L, Zou J J. Progress in Chemistry, 2018, 30(9): 1424.
(谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军. 化学进展, 2018, 30(9): 1424.)
[7]
Huertas D, Florscher M, Dragojlovic V. Green Chem., 2009, 11(1): 91.

doi: 10.1039/B813485E
[8]
Nguyen M, Nguyen L, Jeon E, Kim J, Cheong M, Kim H, Lee J. J. Catal., 2008, 258(1): 5.

doi: 10.1016/j.jcat.2008.05.008
[9]
Wang Z, Wei H, He F, Wei H Y. Missiles and Space Vehicles, 2011, 3: 41.
(王贞, 卫豪, 贺芳, 卫宏远. 导弹与航天运载技术, 2011, 3: 41.)
[10]
Isikgor F H, Becer C R. Polym. Chem., 2015, 6(25): 4497.

doi: 10.1039/C5PY00263J
[11]
McKendry P. Bioresour. Technol., 2002, 83(1): 37.

doi: 10.1016/S0960-8524(01)00118-3
[12]
Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107(6): 2411.

doi: 10.1021/cr050989d
[13]
Stöcker M,. Angew. Chem. Int. Ed., 2008, 47(48): 9200.
[14]
Li C Z, Zhao X C, Wang A Q, Huber G W, Zhang T. Chem. Rev., 2015, 115(21): 11559.

doi: 10.1021/acs.chemrev.5b00155
[15]
Li H, Riisager A, Saravanamurugan S, Pandey A, Sangwan R S, Yang S, Luque R. ACS Catal., 2018, 8(1): 148.

doi: 10.1021/acscatal.7b02577
[16]
Wang X Y, Jia T H, Pan L, Liu Q, Fang Y M, Zou J J, Zhang X W. Trans. Tianjin Univ., 2021, 27(2): 87.

doi: 10.1007/s12209-020-00273-5
[17]
Wang Y Z, Li Z C, Li Q, Wang H. ACS Omega, 2022, 7(23): 19158.

doi: 10.1021/acsomega.1c07241
[18]
Li Z C, Wang Y Z, Li Q, Xu L Q, Wang H. Green Energy Environ., 2023, 8(1): 331.

doi: 10.1016/j.gee.2021.04.012
[19]
Li Z C, Wang Y Z, Wang H. Energy Technol., 2019, 7(7): 1900418.

doi: 10.1002/ente.v7.7
[20]
Muldoon J A, Harvey B G. ChemSusChem, 2020, 13(22): 5777.

doi: 10.1002/cssc.v13.22
[21]
Li Z C, Li Q, Wang Y Z, Zhang J, Wang H. Energy Fuels, 2021, 35(8): 6691.

doi: 10.1021/acs.energyfuels.1c00185
[22]
Zhao C, Camaioni D M, Lercher J A. J. Catal., 2012, 288: 92.

doi: 10.1016/j.jcat.2012.01.005
[23]
Yang J F, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Cong Y, Zhang T. Chem. Commun., 2014, 50(20): 2572.

doi: 10.1039/c3cc46588h
[24]
Sheng X R, Li G Y, Wang W T, Cong Y, Wang X D, Huber G W, Li N, Wang A Q, Zhang T. AlChE. J., 2016, 62(8): 2754.

doi: 10.1002/aic.v62.8
[25]
Wang W, Li N, Li G Y, Li S S, Wang W T, Wang A Q, Cong Y, Wang X D, Zhang T. ACS Sustainable Chem. Eng., 2017, 5(2): 1812.

doi: 10.1021/acssuschemeng.6b02554
[26]
Liu Y N, Nie G K, Yu S T, Pan L, Wang L, Zhang X W, Shi C X, Zou J J. Chem. Eng. Sci., 2021, 238: 116592.
[27]
Wang W, An L, Qian C, Li Y Q, Li M P, Shao X Z, Ji X H, Li Z Z. Molecules, 2023, 28(13): 5029.

doi: 10.3390/molecules28135029
[28]
Zhang X H, Song M J, Liu J G, Zhang Q, Chen L G, Ma L L. J. Energy Chem., 2023, 79: 22.
[29]
Liu Y T, Li G Y, Hu Y C, Wang A Q, Lu F, Zou J J, Cong Y, Li N, Zhang T. Joule, 2019, 3(4): 1028.

doi: 10.1016/j.joule.2019.02.005
[30]
Sato T, Rode C V, Sato O, Shirai M. Appl. Catal. B Environ., 2004, 49(3): 181.

doi: 10.1016/j.apcatb.2003.12.010
[31]
Wang W, Liu Y T, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Zhang T. Sci. Rep., 2017, 7: 6111.
[32]
Harvey B G, Wright M E, Quintana R L. Energy Fuels, 2010, 24(1): 267.

doi: 10.1021/ef900799c
[33]
Zhu B Q, Yuan B, Yu F L, Xie C X. Journal of Qingdao University of Science and Technology Natural Science Edition, 2022, 43(5): 14.
(朱本强, 袁冰, 于凤丽, 解从霞. 青岛科技大学学报(自然科学版), 2022, 43(5): 14.)
[34]
Li Z, Pan L, Nie G K, Xie J J, Xie J W, Zhang X W, Wang L, Zou J J. Chem. Eng. Sci., 2018, 191: 343.
[35]
Nie G K, Wang H Y, Li Q, Pan L, Liu Y N, Song Z Q, Zhang X W, Zou J J, Yu S T. Appl. Catal. B Environ., 2021, 292: 120181.

doi: 10.1016/j.apcatb.2021.120181
[36]
Nie G K, Dai Y Y, Liu Y N, Xie J J, Gong S, Afzal N, Zhang X W, Pan L, Zou J J. Chem. Eng. Sci., 2019, 207: 441.
[37]
Yang S C, Shi C X, Shen Z S, Pan L, Huang Z F, Zhang X W, Zou J J. J. Energy Chem., 2023, 77: 452.
[38]
Nie G K, Zhang X W, Pan L, Han P J, Xie J J, Li Z, Xie J W, Zou J J. Chem. Eng. Sci., 2017, 173: 91.
[39]
Xu J L, Li N, Li G Y, Han F G, Wang A Q, Cong Y, Wang X D, Zhang T. Green Chem., 2018, 20(16): 3753.

doi: 10.1039/C8GC01628C
[40]
Timothy A A, Han F G, Li G Y, Xu J L, Wang A Q, Cong Y, Li N. Sustain. Energy Fuels, 2020, 4(11): 5560.

doi: 10.1039/D0SE01110J
[41]
Zhang X J, Han F A, Lin S Z, Chen F, Sun M J, Liu J J, Li G Y, Tang H, Wang A Q, Cong Y, Li N. ACS Sustainable Chem. Eng., 2019, 7(14): 12023.
[42]
Han F G, Xu J Y, Li G Y, Xu J L, Wang A Q, Cong Y, Zhang T, Li N. Sustain. Energy Fuels, 2021, 5(2): 556.

doi: 10.1039/D0SE01544J
[43]
Gao H F, Han F G, Li G Y, Wang A Q, Cong Y, Li Z Z, Wang W, Li N. Sustain. Energy Fuels, 2022, 6(6): 1616.

doi: 10.1039/D1SE01732B
[44]
Pan L, Xie J J, Nie G K, Li Z, Zhang X W, Zou J J. AlChE. J., 2020, 66(1): e16789.

doi: 10.1002/aic.v66.1
[45]
Xie J J, Zhang X W, Liu Y K, Li Z, E X T F, Xie J W, Zhang Y C, Pan L, Zou J J. Catal. Today, 2019, 319: 139.

doi: 10.1016/j.cattod.2018.04.053
[46]
Meylemans H A, Quintana R L, Goldsmith B R, Harvey B G. ChemSusChem, 2011, 4(4): 465.

doi: 10.1002/cssc.v4.4
[47]
Li G Y, Hou B L, Wang A Q, Xin X L, Cong Y, Wang X D, Li N, Zhang T,. Angew. Chem. Int. Ed., 2019, 58(35): 12154.
[48]
Nie G K, Shi C X, Dai Y Y, Liu Y N, Liu Y K, Ma C, Liu Q, Pan L, Zhang X W, Zou J J. Green Chem., 2020, 22(22): 7765.

doi: 10.1039/D0GC02361B
[49]
Woodroffe J D, Harvey B G. ChemSusChem, 2021, 14(1): 339.

doi: 10.1002/cssc.v14.1
[50]
Liu Y T, Wang R, Qi H F, Liu X Y, Li G Y, Wang A Q, Wang X D, Cong Y, Zhang T, Li N. Nat. Commun., 2021, 12: 46.

doi: 10.3406/comm.1968.1171
[51]
Wang R, Liu Y T, Li G Y, Wang A Q, Wang X D, Cong Y, Zhang T, Li N. ACS Catal., 2021, 11(8): 4810.

doi: 10.1021/acscatal.1c00223
[52]
Yu Z J, Zou Z F, Wang R, Li G Y, Wang A Q, Cong Y, Zhang T, Li N,. Angew. Chem. Int. Ed., 2023, 62(13): e202300008.
[53]
Liu C W, Hu Y C, Li G Y, Wang A Q, Cong Y, Wang X D, Zhang T, Li N. Sustain. Energy Fuels, 2022, 6(3): 834.

doi: 10.1039/D1SE01684A
[54]
Luo X L, Lu R, Si X Q, Jiang H F, Shi Q, Ma H X, Zhang C, Xu J, Lu F. J. Energy Chem., 2022, 69: 231.
[55]
McCoy D E, Feo T, Harvey T A, Prum R O. Nat. Commun., 2018, 9: 1.
[56]
Luo N C, Montini T, Zhang J, Fornasiero P, Fonda E, Hou T T, Nie W, Lu J M, Liu J X, Heggen M, Lin L, Ma C T, Wang M, Fan F T, Jin S Y, Wang F. Nat. Energy, 2019, 4(7): 575.

doi: 10.1016/0360-5442(79)90085-9
[57]
Xie J J, Zhang X W, Shi C X, Pan L, Hou F, Nie G K, Xie J W, Liu Q, Zou J J. Sustain. Energy Fuels, 2020, 4(2): 911.

doi: 10.1039/C9SE00863B
[58]
Xie J J, Pan L, Nie G K, Xie J W, Liu Y K, Ma C, Zhang X W, Zou J J. Green Chem., 2019, 21(21): 5886.

doi: 10.1039/C9GC02790D
[59]
Xie J J, Zhang X W, Pan L, Nie G K, E X T F, Liu Q, Wang P, Li Y F, Zou J J. Chem. Commun., 2017, 53(74): 10303.

doi: 10.1039/C7CC05101H
[60]
Tang H, Chen F, Li G Y, Yang X F, Hu Y C, Wang A Q, Cong Y, Wang X D, Zhang T, Li N. J. Energy Chem., 2019, 29: 23.
[61]
Nie G K, Zhang X W, Pan L, Wang M, Zou J J. Chem. Eng. Sci., 2018, 180: 64.
[62]
Dai Y Y, Nie G K, Gong S, Wang L, Pan L, Fang Y M, Zhang X W, Zou J J. Fuel, 2020, 275: 117962.

doi: 10.1016/j.fuel.2020.117962
[63]
Deng Q, Nie G K, Pan L, Zou J J, Zhang X W, Wang L. Green Chem., 2015, 17(8): 4473.

doi: 10.1039/C5GC01287B
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[4] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[5] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[6] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[7] Jun Jin, Ziheng Lin, Lei Shi. One-Dimensional New Carbon Allotrope: Carbon Chain [J]. Progress in Chemistry, 2021, 33(2): 188-198.
[8] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[9] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[10] Lina Shi, Xin Hu, Ning Zhu, Kai Guo. Cellulose-Based Dielectric Composite [J]. Progress in Chemistry, 2020, 32(12): 2022-2033.
[11] Shaofei Zhao, Peng Liu, Gao Cheng, Lin Yu, Huaqiang Zeng. Preparation and Pseudocapacitor Properties of Self-Supported Nickel Sulfides Electrode Materials [J]. Progress in Chemistry, 2020, 32(10): 1582-1591.
[12] Yanqiao Xu, Ting Chen, Lianjun Wang, Weihui Jiang, Wan Jiang, Zhixiang Xie. From Preparation to Lighting and Display Applications of Ⅰ-Ⅲ-Ⅵ Quantum Dots [J]. Progress in Chemistry, 2019, 31(9): 1238-1250.
[13] Dongdong Zha, Wen Zhou, Peng Yin, Bin Guo, Bengang Li, Yanan Huang. Ways and Mechanism of Improving the Mechanical Properties of Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(7): 1044-1055.
[14] Xinda Yang, Qin Jiang, Pengfei Shi*. Two-Photon Absorptive Multinuclear Complexes [J]. Progress in Chemistry, 2018, 30(8): 1172-1185.
[15] Dandan Shi, Xisha Zhang, Deqing Zhang. Application of Organic Conjugated Frameworks Containing Seven-Membered Carbon Rings in Optoelectronic Materials [J]. Progress in Chemistry, 2018, 30(5): 658-672.