中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (2): 224-233 DOI: 10.7536/PC230705 Previous Articles   Next Articles

• 12 •

Recent Advances in Quasi-Two-Dimensional Blue Perovskite Light- Emitting Diodes

Juan Ma1, Ruiyu Yang1, Yanfeng Chen1,2, Ying Liu1, Shufen Chen1,2()   

  1. 1 School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
    2 State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: iamsfchen@njupt.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62074083); Science and Technology Project of Jiangsu (Science and Technology Cooperation Project of Hong Kong, Macao and Taiwan(BZ2023059); Natural Science Fund for Colleges and Universities in Jiangsu Province(20KJA510005); Project of State Key Laboratory of Organic Electronics and Information Displays(GDX2022010009); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX21_0781)
Richhtml ( 9 ) PDF ( 117 ) Cited
Export

EndNote

Ris

BibTeX

Blue perovskite light-emitting diodes (PeLEDs) restrict the rapid development of full-color display and white lighting technology of perovskite. Quasi-two-dimensional (Q2D) perovskite enables to realize blue light emission via strict control on layer number and use of quantum confinement effect and can significantly improve the stability of perovskite film and PeLEDs by using hydrophobic organic ligands, which has gradually become a research hotspot in the field of perovskites. This review summarizes the research progress on Q2D blue PeLEDs from three aspects of component engineering, film process and device optimization, and analyzes the challenges faced by Q2D blue PeLEDs and the efficiency improvement approaches. At last, this paper envisages the future research direction and feasible solutions.

Contents

1 Introduction

2 Overview of quasi-two-dimensional perovskites

3 Research progress of quasi-two-dimensional blue perovskite light-emitting diodes

3.1 Component engineering

3.2 Film process optimization

3.3 Device structure optimization

4 Challenges faced by quasi-two-dimensional blue light-emitting perovskites

4.1 Photoluminescence quantum efficiency

4.2 Spectral stability

4.3 Phase purity

4.4 Charge injection efficiency and interface engineering

5 Conclusion and outlook

Fig. 1 Crystal structure of perovskites
Fig. 2 (a) Structure derivation of a layered perovskite with spacer cations cutting the 3D perovskite from the <100> plane[17], Copyright 2019, American Chemical Society; (b) crystal structures of RP and DJ phase layered perovskites (n = 3)[17], Copyright 2019, American Chemical Society; (c) crystal structures of layered perovskite of ACI phase (n = 1, 2, 3).
Fig. 3 (a) PL spectra of PEA2(FAPbBr3)n?1PbBr4 with different n values[22], Copyright 2018, Nature Publishing Group; (b) band gaps of quasi-2D perovskites, illustrated as atomic models of quasi-2D perovskites with n=1, 3, and 5[23], Copyright 2019, Wiley-Blackwell; (c) energy band diagram of charge transfer or funneling of excitons between Q2DPe of small n to large n phase; (d) normalized PL spectra for a series of quasi-2D PBABr:CsPbBrxCl3?x perovskite films with different chloride content[24], Copyright 2019, American Chemical Society.
Fig. 4 (a) Characterization of external quantum efficiency (EQE) versus current density of PEA2(Cs1?xEAxPbBr3)2PbBr4 perovskite LED[15], Copyright 2020, Nature Publishing Group; (b) normalized electroluminescence (EL) spectra of PEA2(Cs1?xEAxPbBr3)2PbBr4 PeLED[15], Copyright 2020, Nature Publishing Group; (c) schematic illustration of the yttrium distribution and radiation recombination within the CsPbBr3:PEACl:YCl3 thin-film[30], Copyright 2019, Nature Publishing Group; (d) EQE curves of PeLEDs with different YCl3 percentages. Inset shows the digital photographic image of the operating PeLED[30], Copyright 2019, Nature Publishing Group.
Fig. 5 (a) Schematic diagram of quasi-two-dimensional perovskite film prepared by NCP method[32], Copyright 2019, Royal Society of Chemistry; (b) EL intensity as a function of casting temperature at a fixed current density and fixed voltage and PLQY as a function of casting temperature for (BA)2(MA)2Pb4I13(Pb4) LEDs[36], Copyright 2018, Wiley-Blackwell; (c) J-V characteristic curves for LEDs using (BA)2(MA)2Pb4I13 casted by different temperatures[36], Copyright 2018, Wiley-Blackwell.
Fig. 6 (a) Current-voltage-luminance characteristic curves[37], Copyright 2020, Nature Publishing Group; (b) characterization of EQE versus current density[37], Copyright 2020, Nature Publishing Group; (c) phase segregation of mixed-halide perovskites [11], Copyright 2022, Nature Publishing Group; (d) the sandwich-like interlayer structure of quasi-2D PeLEDs
Table 1 Summary of performance parameters of blue and sky-blue Q2D PeLEDs
Perovskite material Device structure EL Peak (nm) EQE (%) Vt/(V) Ref
PEA2Cs1.6MA0.4Pb3Br10
treated with DPPOCl
ITO/PEDOT:PSS:PFI/Q2DPe/TPBi/LiF/Al 479 5.2 - 14
PEA2(Rb0.6Cs0.4)Pb3Br10 ITO/PEDOT:PSS/Q2DPe/TmPyPB/LiF/Al 475 1.35 3 15
(PEA)2PbBr4 ITO/PEDOT:PSS/2D perovskite/TPBi/Ca/Al 410 0.04 2.5 18
P-PDA,PEACsn−1PbnBr3n+1 ITO/PVK/PFI/Q2DPe/3TPYMB/Liq/Al 465 2.6 - 19
PEACl:CsPbBr3:YCl3 ITO/TB(MA)/Q2DPe/TPBi/LiF/Al 488 13.5% 6 38
CsPbBr3:PEACl:YCl3 ITO/PEDOT:PSS/PVK/Q2DPe/TPBi/LiF/Al 485 11 3 30
PEA2Csn−1Pbn(Br/Cl)3n+1 ITO/PEDOT:PSS/Q2DPe/TPBi/LiF/Al 480 5.7 3.2 37
(Cs/Rb/FA/PEA/K)Pb(Cl/Br)3 ITO/LiF/Q2DPe/LiF/Bphen/LiF/Al 484 2.01 -- 39
EA2(MA)n−1PbnBr3n+1 ITO/PEDOT:PSS/Q2DPe/TmPyPB/CsF/Al 485 2.6 3.4 42
OLA2MAn−1PbnBr3n+1 ITO/PEDOT:PSS/PVK/Q2DPe/TPBi/LiF/Al 456 0.0046 3.4 43
BA2MA2Pb3Br7Cl3 ITO/PEDOT:PSS/Poly-TPD /Q2DPe/TPBi/LiF/Al 468 0.01 5.2 44
POEA2MAn−1PbnBr3n+1 ITO/PEDOT:PSS/Q2DPe/TPBi/Ba/Al 480 1.1 3.6 45
BA2Csn−1Pbn(Br/Cl)3n+1 ITO/PEDOT:PSS/Q2DPe/TPBi/Al 487 6.2 4.5 46
PBA2Csn−1Pbn(Br/Cl)3n+1 ITO/NiOx/LiF/Q2DPe/TPBi/LiF//Al 490 0.52 - 24
(IPA:PEA)2(MA:Cs)n−1Pbn
Br3n+1
ITO/PEDOT:PSS/Q2DPe/TPBi/LiF/Al 490 1.9 5 47
BA2DMA1.6Cs2Pb3Br11.6 ITO/PEDOT:PSS or NiOx/Q2DPe/TPBi/LiF/Al 490 2.4 3.3 48
PEA2DMA1.2Cs2Pb3Br11.2 ITO/PEDOT:PSS or NiOx/Q2DPe/TPBi/LiF/Al 499 1.58 4.4 48
(PEA:NPA)Csn−1PbnBr3n+1 ITO/poly(N-vinylcarbazole)/PVK/Q2DPe/
PO-T2T/Liq/Al
485 2.62 2.6 49
(PBABr):(Cs/FA/MA)Br:PbBr2 ITO/PEDOT: PSS/Q2DPe/PO-T2T/LiF/Al 465 2.34 2.8 50
PBA2(FACs)n−1PbnBr3n+1 ITO/NiOx/TFB/PVK/Q2DPe/TPBi/LiF/Al 483 9.5 3.3 51
[1]
Dou L T, Wong A B, Yu Y, Lai M L, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T N, Ginsberg N S, Wang L W, Alivisatos A P, Yang P D. Science, 2015, 349: 1518.

doi: 10.1126/science.aac7660
[2]
Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C, Huang J. Adv. Mater., 2015, 27: 1912.

doi: 10.1002/adma.v27.11
[3]
Zhang X, Lai Z, Tan C, Zhang H. Angew. Chem. Int. Ed., 2016, 55: 8816.

doi: 10.1002/anie.v55.31
[4]
Tan Z-K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Nat. Nanotechnol., 2014, 9: 687.

doi: 10.1038/nnano.2014.149
[5]
Bai W, Xuan T, Zhao H, Dong H, Cheng X, Wang L, Xie R. J. Adv. Mater., 2023, 35: 2302283.

doi: 10.1002/adma.v35.39
[6]
Jiang J, Chu Z, Yin Z, Li J, Yang Y, Chen J, Wu J, You J, Zhang X. Adv. Mater., 2022, 34: 2204460.
[7]
Sun Y, Ge L, Dai L, Cho C, Ferrer Orri J, Ji K, Zelewski S J, Liu Y, Mirabelli A J, Zhang Y, Huang J Y, Wang Y, Gong K, Lai M C, Zhang L, Yang D, Lin J, Tennyson E M, Ducati C, Stranks S D, Cui L S Greenham N C. Nature, 2023, 615: 830.

doi: 10.1038/s41586-023-05792-4
[8]
Zhou B, Qi Z, Dai M, Xing C, Yan D. Angew. Chem. Int. Ed., 2023, 62: e202309913.
[9]
Gao R., Yan D. Sci. Bull., 2023, 68: 770.

doi: 10.1016/j.scib.2023.03.042
[10]
Protesescu L., Yakunin S., Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15: 3692.

doi: 10.1021/nl5048779
[11]
Yang X, Ma L, Yu M, Chen H-H, Ji Y, Hu A, Zhong Q, Jia X, Wang Y, Zhang Y, Zhu R, Wang X, Lu C. Light Sci. Appl., 2023, 12: 177.

doi: 10.1038/s41377-023-01206-2
[12]
Shen Y, Li Y Q, Zhang K, Zhang L J, Xie F M, Chen L, Cai X Y, Lu Y, Ren H, Gao X, Xie H, Mao H, Kera S, Tang J X. Adv. Funct. Mater. 2022, 32: 2206574.
[13]
Karlsson M, Yi Z, Reichert S, Luo X, Lin W, Zhang Z, Bao C, Zhang R, Bai S, Zheng G, Teng P, Duan L, Lu Y, Zheng K, Pullerits T, Deibel C, Xu W, Friend R, Gao F. Nat. Commun., 2021, 12: 361.

doi: 10.1038/s41467-020-20582-6
[14]
Ma D, Todorovic P, Meshkat S, Saidaminov M I, Wang Y K, Chen B, Li P, Scheffel B, Quintero-Bermudez R, Fan J Z, Dong Y, Sun B, Xu C, Zhou C, Hou Y, Li X, Kang Y, Voznyy O, Lu Z-H, Ban D, Sargent E H. J. Am. Chem. Soc., 2020, 142: 5126.

doi: 10.1021/jacs.9b12323
[15]
Chu Z, Zhao Y, Ma F, Zhang C X, Deng H, Gao F, Ye Q, Meng J, Yin Z, Zhang X, You J. Nat. Commun., 2020, 11: 4165.

doi: 10.1038/s41467-020-17943-6
[16]
Rao C N R, Gopalakrishnan K, Maitra U. ACS Appl. Mater. Interfaces, 2015, 7: 7809.

doi: 10.1021/am509096x
[17]
Huang P, Kazim S, Wang M, Ahmad S. ACS Energy Lett., 2019, 4: 2960.

doi: 10.1021/acsenergylett.9b02063
[18]
Lee D E, Kim S Y, Jang H W. J. Korean Ceram. Soc., 2020, 57: 455.

doi: 10.1007/s43207-020-00058-5
[19]
Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y, Liao L S. Adv. Mater., 2019, 31: 1904319.
[20]
Li M, Gao Q, Liu P, Liao Q, Zhang H, Yao J, Hu W, Wu Y, Fu H. Adv. Funct. Mater., 2018, 28: 1707006.

doi: 10.1002/adfm.v28.17
[21]
Hoffman J B, Alam R, Kamat P V. ACS Energy Lett., 2017, 2: 391.

doi: 10.1021/acsenergylett.6b00717
[22]
Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J. Nat. Commun., 2018, 9: 1169.

doi: 10.1038/s41467-018-03702-1
[23]
Fang T, Zhang F, Yuan S, Zeng H, Song J. InfoMat, 2019, 1: 211.

doi: 10.1002/inf2.v1.2
[24]
Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B. ACS Photonics, 2019, 6: 667.

doi: 10.1021/acsphotonics.8b01490
[25]
Ravi VK, Markad GB, Nag A. ACS Energy Lett., 2016, 1: 665.
[26]
Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Science, 2015, 349: 1518.

doi: 10.1126/science.aac7660
[27]
Akkerman Q A, Motti S G, Srimath Kandada A R, Mosconi E, D’Innocenzo V, Bertoni G, Marras S, Kamino B A, Miranda L, De Angelis F, Petrozza A, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138: 1010.

doi: 10.1021/jacs.5b12124
[28]
Weidman M C, Seitz M, Stranks S D, Tisdale W A. ACS Nano, 2016, 10: 7830.

doi: 10.1021/acsnano.6b03496
[29]
Zhumekenov A A, Saidaminov M I, Haque M A, Alarousu E, Sarmah S P, Murali B, Dursun L, Miao X H, Abdelhady A L, Wu T, Mohammed O F, Bakr O M. ACS Energy Lett., 2016, 1: 32.

doi: 10.1021/acsenergylett.6b00002
[30]
Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J. Nat. Commun., 2019, 10: 5633.

doi: 10.1038/s41467-019-13580-w
[31]
Chen S, Shi G. Adv. Mater., 2017, 29: 1605448.
[32]
Xia P, Lu Y, Yu H, Li Y, Zhu W, Xu X, Zhang W, Qian J, Shen W, Liu L, Deng L, Chen S. Nanoscale, 2019, 11: 20847.

doi: 10.1039/C9NR06819H
[33]
Lee H D, Kim H, Cho H, Cha W, Hong Y, Kim Y H, Sadhanala A, Venugopalan V, Kim J S, Choi J W, Lee C L, Kim D, Yang H, Friend R H, Lee T W. Adv. Funct. Mater., 2019, 29: 1901225.
[34]
Wang Z, Wang F, Sun W, Ni R, Hu S, Liu J, Zhang B, Alsaed A, Hayat T, Tan Z a. Adv. Funct. Mater., 2018, 28: 1804187.

doi: 10.1002/adfm.v28.47
[35]
Tian Y, Zhou C, Worku M, Wang X, Ling Y, Gao H, Zhou Y, Miao Y, Guan J, Ma B. Adv. Mater., 2018, 30: 1707093.
[36]
Tsai H, Nie W, Blancon J C, Stoumpos C C, Soe C M M, Yoo J, Crochet J, Tretiak S, Even J, Sadhanala A, Azzellino G, Brenes R, Ajayan P M, Bulovic V, Stranks S D, Friend R H, Kanatzidis M G, Mohite A D. Adv. Mater., 2018, 30: 1704217.
[37]
Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y. Nat. Commun., 2019, 10: 1027.

doi: 10.1038/s41467-019-09011-5
[38]
Liu Y, Zhang L, Chen S, Liu C, Li Y, Wu J, Wang D, Jiang Z, Li Y, Li Y, Wang X, Xu B. Small, 2021, 17: 2101477.

doi: 10.1002/smll.v17.37
[39]
Yuan F, Ran C, Zhang L, Dong H, Jiao B, Hou X, Li J, Wu Z. ACS Energy Lett., 2020, 5: 1062.

doi: 10.1021/acsenergylett.9b02562
[40]
Ahmad S, Fu P, Yu S, Yang Q, Liu X, Wang X, Wang X, Guo X, Li C. Adv. Mater., 2022, 34: 2205217.
[41]
Liu Y, Ono L K, Tong G, Bu T, Zhang H, Ding C, Zhang W. J. Am. Chem. Soc., 2021, 143: 19711.

doi: 10.1021/jacs.1c07757
[42]
Wang Q, Ren J, Peng X F, Ji X X, Yang X H. ACS Appl. Mater. Interfaces, 2017, 9: 29901.

doi: 10.1021/acsami.7b07458
[43]
Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y C, Wang M, Nedelcu G, Kim Y, Lin S, Santos E J G, Kovalenko M V, Shih C J. ACS Nano, 2016, 10: 9720.

doi: 10.1021/acsnano.6b05775
[44]
Hu H, Salim T, Chen B, Lam Y M. Sci. Rep., 2016, 6: 33546.

doi: 10.1038/srep33546
[45]
Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y. Adv. Mater., 2017, 29: 1603157.

doi: 10.1002/adma.v29.8
[46]
Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E. Chem. Mater., 2019, 31: 83.

doi: 10.1021/acs.chemmater.8b02999
[47]
Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H. Nat. Commun., 2018, 9: 3541.

doi: 10.1038/s41467-018-05909-8
[48]
Zeng S, Shi S, Wang S, Xiao Y. J. Mater. Chem. C, 2020, 8: 1319.

doi: 10.1039/C9TC05590H
[49]
Jin Y, Wang Z K, Yuan S, Wang Q, Qin C, Wang K L, Dong C, Li M, Liu Y, Liao L S. Adv. Funct. Mater., 2020, 30: 1908339.
[50]
Yantara N, Jamaludin N F, Febriansyah B, Giovanni D, Bruno A, Soci C, Sum T C, Mhaisalkar S, Mathews N. ACS Energy Lett., 2020, 5: 1593.

doi: 10.1021/acsenergylett.0c00559
[51]
Liu Y, Cui J, Du K, Tian H, He Z, Zhou Q, Yang Z, Deng Y, Chen D, Zuo X, Ren Y, Wang L, Zhu H, Zhao B, Di D, Wang J, Friend R H, Jin Y. Nat. Photonics, 2019, 13: 760.

doi: 10.1038/s41566-019-0505-4
No related articles found!