中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (2): 234-243 DOI: 10.7536/PC230623 Previous Articles   Next Articles

• 14 •

Research Advances on High-Temperature Infrared Modification of Oxide Aerogels

Ruiming Huang, Yonggang Jiang(), Fengqi Liu, Junzong Feng, Liangjun Li, Jian Feng   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: jygemail@nudt.edu.cn
  • Supported by:
    Hunan Province Key R&D Plan(2022GK2027); Natural Science Foundation of Hunan Province(2023JJ30632); National Key Research and Development Program of China(2022YFC2204403)
Richhtml ( 6 ) PDF ( 55 ) Cited
Export

EndNote

Ris

BibTeX

Oxide aerogel is a novel nano-porous material with ultra-low thermal conductivity. In particular, it can be used in spaceflight applications and other thermal management fields. Currently, with high infrared transmittance, most of the common pure oxide aerogels, such as silica and alumina, have no advantages in high-temperature insulation because of their intrinsic property. However, electromagnetic radiation in the near-infrared region is the main mode of heat conduction at high temperatures, accordingly, a large amount of electromagnetic radiation will pass through aerogel and lead to the rapid increase of thermal conductivity. Therefore, to meet the requirement of thermal insulation at higher temperature, it is necessary to reduce the radiative heat transfer. Based on the research status, this paper reviewed the main progress of improving high temperature insulation of oxide aerogel by adding opacifier, fiber and adjusting the structure and morphology. Moreover, the future research direction has prospected.

Contents

1 Introduction

2 Application of opacifiers in infrared modification of aerogels

2.1 TiO2 opacifier

2.2 SiC opacifier

2.3 Carbon materials opacifier

2.4 Other opacifier

3 Application of fiber in infrared modification of aerogels

3.1 Glass fiber

3.2 ZrO2 fiber

3.3 Mullite fiber

3.4 Modified fiber

4 Application of structure/morphology change in infrared modification of aerogels

4.1 Multiple-layer aerogel insulation materials

4.2 Lamellar aerogels

4.3 Nanofiber aerogels

5 Conclusion and outlook

Fig. 1 Schematic diagram of shading mechanism of TiO2[16]
Fig. 2 (a) 3D printing of SiO2 aerogel flow chart; (b, c) physical diagram of printiong aerogel[35]
Fig. 3 Effect of doping amount on thermal conductivity of graphene[38]
Fig. 4 Variation trend of thermal conductivity with temperature under different doping amounts(fc) of microglass fibers[48]
Fig. 5 (a~c)SEM image of ZrO2 fiber reinforced ZrO2-SiO2 aerogel[49]
Fig. 6 (a) Mechanism schematic of thermal insulation of composite material; (b~d) insulation performance test of materials; (e) sample morphology changes before and after testing; (f) compared with the thermal conductivity of other aerogel composites in previous literature at 1000 ℃[56]
Fig. 7 SEM images of SiC-coated mullite fiber[58]
Fig. 8 Schematic diagram of thermal insulation mechanism of modified mullite fiber[59]
Fig. 9 Schematic diagram of multi-layer insulation material structure
Fig. 10 Schematic illustration of the synthesis and the SEM image of α-Al2O3 nanosheets[68]
Fig. 11 Schematic diagram of coating process of Al2O3 nanorods[22]
[1]
Zhang S L, Li X, Zuo J Y, Qin J, Cheng K L, Feng Y, Bao W. Prog. Aerosp. Sci., 2020, 119: 100646.

doi: 10.1016/j.paerosci.2020.100646
[2]
Zhao S Y, Siqueira G, Drdova S, Norris D, Ubert C, Bonnin A, Galmarini S, Ganobjak M, Pan Z Y, Brunner S, Nyström G, Wang J, Koebel M M, Malfait W J. Nature, 2020, 584(7821): 387.

doi: 10.1038/s41586-020-2594-0
[3]
Chen L W, Gan L H. Chemistry, 1997,(8): 21.
陈龙武, 甘礼华. 化学通报, 1997,(8): 21.)
[4]
Liu F Q, Jiang Y G, Peng F, Feng J Z, Li L J, Feng J. Progress in Chemistry, 2022, 34(6): 1384.
(柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 化学进展, 2022, 34(6): 1384.)
[5]
Liu P F, Li X F, Min P, Chang X Y, Shu C, Ding Y, Yu Z Z. Nano Micro. Lett., 2021, 13(1): 22.

doi: 10.1007/s40820-020-00548-5
[6]
Xue T T, Fan W, Zhang X, Zhao X Y, Yang F, Liu T X. Compos. Part B Eng., 2021, 219: 108963.

doi: 10.1016/j.compositesb.2021.108963
[7]
Tang G H, Bi C, Zhao Y, Tao W Q. Energy, 2015, 90: 701.

doi: 10.1016/j.energy.2015.07.109
[8]
Lu X, Arduini-Schuster M C, Kuhn J, Nilsson O, Fricke J, Pekala R W. Science, 1992, 255(5047): 971.

doi: 10.1126/science.255.5047.971
[9]
Lu X, Wang P, Arduini-Schuster M C, Kuhn J, Büttner D, Nilsson O, Heinemann U, Fricke J. J. Non Cryst. Solids, 1992, 145: 207.

doi: 10.1016/S0022-3093(05)80457-0
[10]
Xie T, He Y L, Hu Z J. Int. J. Heat Mass Transf., 2013, 58(1/2): 540.

doi: 10.1016/j.ijheatmasstransfer.2012.11.016
[11]
Wang S L, Jin Z, Li J N, Zhang B X, Wang Y B, Yang Y R, Wang X D, Lee D J. J. Taiwan Inst. Chem. Eng., 2021, 120: 150.

doi: 10.1016/j.jtice.2021.03.003
[12]
Kuhn J, Gleissner T, Arduini-Schuster M C, Korder S, Fricke J. J. Non Cryst. Solids, 1995, 186: 291.

doi: 10.1016/0022-3093(95)00067-4
[13]
Zhu Z X, Wang F, Yao H J, Dong J X, Long D H. J. Inorg. Mater., 2018, 33(9): 969.
(朱召贤, 王飞, 姚鸿俊, 董金鑫, 龙东辉. 无机材料学报, 2018, 33(9): 969.)
[14]
Wang W Q, Zhang Z H, Zu G Q, Shen J, Zou L P, Lian Y, Liu B, Zhang F. RSC Adv., 2014, 4(97): 54864.

doi: 10.1039/C4RA08832H
[15]
Zou W B, Wang X D, Wu Y, Zou L P, Zu G Q, Chen D, Shen J. Ceram. Int., 2019, 45(1): 644.

doi: 10.1016/j.ceramint.2018.09.223
[16]
Liu S J, Wu X D, Li Y H, Cui S, Shen X D, Tan G. Appl. Therm. Eng., 2021, 190: 116745.

doi: 10.1016/j.applthermaleng.2021.116745
[17]
Shi X, Zhang S C, Chen Y F, Li M Q, Ouyang S X, Peng X Y. Key Eng. Mater., 2010, 434/435: 689.

doi: 10.4028/www.scientific.net/KEM.434-435
[18]
Pan Y W, Jin X Y, Wang H B, Huang H, Wu C, Yan X J, Hong C Q, Zhang X H. J. Mater. Sci. Technol., 2023, 152: 181.

doi: 10.1016/j.jmst.2022.12.035
[19]
Zhang R B, Hou X B, Ye C S, Wang B L. J. Alloys Compd., 2017, 699: 511.

doi: 10.1016/j.jallcom.2017.01.007
[20]
Zhang H, Liu J L, Zhu S Z. J. Wuhan Univ. Technol. Mater Sci. Ed., 2022, 37(3): 324.

doi: 10.1007/s11595-022-2534-y
[21]
Lei Y S, Xu H Y, Dong D P, Xie R J. Cryog. Supercond., 2018, 46(11): 15.
(雷营生, 徐红艳, 董德平, 谢荣建. 低温与超导, 2018, 46(11): 15.)
[22]
Liu F Q, He C B, Jiang Y G, Yang Y P, Peng F, Liu L F, Men J, Feng J Z, Li L J, Tang G H, Feng J. Chem. Eng. J., 2023, 455: 140502.

doi: 10.1016/j.cej.2022.140502
[23]
Liang X P, Shao Z J, Wu Z, Wang J Y. Ceram. Int., 2022, 48(15): 22213.
[24]
Feng J P, Chen D P, Ni W, Yang S Q, Hu Z J. J. Non Cryst. Solids, 2010, 356(9/10): 480.

doi: 10.1016/j.jnoncrysol.2009.12.015
[25]
Sun D K. Masteral Dissertation of Chang’an University, 2012.
(孙登科. 长安大学硕士论文, 2012.)
[26]
Xu H F, Huang Y D, Zhang H J, Chen Q Y, Yan G W, Liu L. J. Non Cryst. Solids, 2012, 358(21): 2922.

doi: 10.1016/j.jnoncrysol.2012.07.022
[27]
Cargnello M, Gordon T R, Murray C B. Chem. Rev., 2014, 114(19): 9319.

doi: 10.1021/cr500170p
[28]
Wang J, Kuhn J, Lu X. J. Non Cryst. Solids, 1995, 186: 296.

doi: 10.1016/0022-3093(95)00068-2
[29]
Liu G W, Liu Y G. Key Eng. Mater., 2016, 723: 492.

doi: 10.4028/www.scientific.net/KEM.723
[30]
Zhang R B, Gu H T, Hou X B, Zhou P. J. Porous Mater., 2021, 28(1): 57.

doi: 10.1007/s10934-020-00935-8
[31]
Yang H X, Ye F. RSC Adv., 2022, 12(19): 12226.

doi: 10.1039/D2RA01336C
[32]
Ouyang D G, Hu T S, Luo A Z, Zhao X J. Res. Iron Steel, 2002, 30(1): 40.
(欧阳德刚, 胡铁山, 罗安智, 赵修建. 钢铁研究, 2002, 30(1): 40.)
[33]
Zhang H, Ma Y X, Wang X, Ji W T, Li Y M, Tao W Q. J. Eng. Thermophys., 2018, 39(5): 1039.
(张虎, 马奕新, 王娴, 冀文涛, 李跃明, 陶文铨. 工程热物理学报, 2018, 39(5): 1039.)
[34]
Pang H Q, Li Z Y. Int. J. Therm. Sci., 2021, 160: 106681.

doi: 10.1016/j.ijthermalsci.2020.106681
[35]
Wang Y T, Chu C Y, Duan C Q, Dong J J, Chen H, Ying S T, Guo J J, Xu G J, Hu F, Cheng Y C, Sun A H. J. Non Cryst. Solids, 2023, 608: 122251.

doi: 10.1016/j.jnoncrysol.2023.122251
[36]
Zeng S Q, Hunt A, Greif R. J. Non Cryst. Solids, 1995, 186: 271.

doi: 10.1016/0022-3093(95)00076-3
[37]
Zhao Y, Tang G H, Tao W Q. J. Eng. Thermophys., 2015, 36(3): 591.
赵越, 唐桂华, 陶文铨. 工程热物理学报, 2015, 36(3): 591.)
[38]
Zhu J Y, Ren H B, Bi Y T. J. Porous Mater., 2018, 25(6): 1697.

doi: 10.1007/s10934-018-0583-6
[39]
Jiang D P, Qin J, Zhou X F, Li Q L, Yi D Q, Wang B. Ceram. Int., 2022, 48(11): 16290.

doi: 10.1016/j.ceramint.2022.02.178
[40]
Lamy-Mendes A, Girão A V, Silva R F, Durães L. Microporous Mesoporous Mater., 2019, 288: 109575.

doi: 10.1016/j.micromeso.2019.109575
[41]
Parale V G, Jung H N R, Han W, Lee K Y, Mahadik D B, Cho H H, Park H H. J. Alloys Compd., 2017, 727: 871.

doi: 10.1016/j.jallcom.2017.08.189
[42]
Soorbaghi F P, Kokabi M, Bahramian A R. Int. J. Heat Mass Transf., 2019, 136: 899.

doi: 10.1016/j.ijheatmasstransfer.2019.03.059
[43]
Qin Y Q, Jiang Y G, Feng J, Feng J Z, Yue C W. Mater. Rep., 2015(11): 129.
秦艳青, 姜勇刚, 冯坚, 冯军宗, 岳晨午. 材料导报, 2015(11): 129.
[44]
Gan X Z. Doctoral Dissertation of Shandong University, 2018.
(甘信柱. 山东大学博士论文, 2018.)
[45]
Guo J F, Tang G H, Feng J, Jiang Y G, Feng J Z. Int. J. Heat Mass Transf., 2020, 160: 120194.

doi: 10.1016/j.ijheatmasstransfer.2020.120194
[46]
Zhu Z X, Yao H J, Wang F, Dong J X, Wu K D, Cao J X, Long D H. Macromol. Mater. Eng., 2019, 304(5): 1800676.
[47]
Zhao J J, Duan Y Y, Wang X D, Wang B X. J. Non Cryst. Solids, 2012, 358(10): 1303.

doi: 10.1016/j.jnoncrysol.2012.02.037
[48]
Jiang Y G, Feng J Z, Feng J. J. Sol Gel Sci. Technol., 2017, 83(1): 64.

doi: 10.1007/s10971-017-4383-2
[49]
He J, Zhao H Y, Li X L, Su D, Ji H M, Yu H J, Hu Z P. Ceram. Int., 2018, 44(8): 8742.

doi: 10.1016/j.ceramint.2018.01.089
[50]
Zhang R B, Ye C S, Wang B L. J. Porous Mater., 2018, 25(1): 171.

doi: 10.1007/s10934-017-0430-1
[51]
Feng J, Gao Q F, Feng J Z, Jiang Y G. J. Natl. Univ. Def. Technol., 2010, 32(1): 40.
(冯坚, 高庆福, 冯军宗, 姜勇刚. 国防科技大学学报, 2010, 32(1): 40.)
[52]
He J, Li X L, Su D, Ji H M, Wang X J. J. Eur. Ceram. Soc., 2016, 36(6): 1487.

doi: 10.1016/j.jeurceramsoc.2015.11.021
[53]
Liu B X, Gao M, Liu X C, Zhao X F, Zhang J, Yi X B. ACS Appl. Nano Mater., 2019, 2(11): 7299.

doi: 10.1021/acsanm.9b01791
[54]
Peng F, Jiang Y G, Feng J, Cai H F, Feng J Z, Li L J. Chem. Eng. J., 2021, 411: 128402.

doi: 10.1016/j.cej.2021.128402
[55]
Peng F, Jiang Y G, Feng J, Liu F Q, Feng J Z, Li L J. J. Eur. Ceram. Soc., 2022, 42(14): 6684.

doi: 10.1016/j.jeurceramsoc.2022.07.001
[56]
Liu F Q, Jiang Y G, Peng F, Feng J Z, Li L J, Feng J. Chem. Eng. J., 2023, 461: 141721.

doi: 10.1016/j.cej.2023.141721
[57]
Yu H J, Tong Z W, Zhang B J, Chen Z W, Li X L, Su D, Ji H M. Chem. Eng. J., 2021, 418: 129342.

doi: 10.1016/j.cej.2021.129342
[58]
Xu L, Jiang Y G, Feng J Z, Feng J, Yue C W. Ceram. Int., 2015, 41(1): 437.

doi: 10.1016/j.ceramint.2014.08.088
[59]
Zhang B J, Liu Y, Wu Q X, Zhou M, Su D, Ji H M, Li X L. J. Eur. Ceram. Soc., 2022, 42(13): 5995.

doi: 10.1016/j.jeurceramsoc.2022.06.061
[60]
Ding W, Li H Y, Liu H L, Li Q, Wu Y W. J. Eur. Ceram. Soc., 2022, 42(13): 5438.

doi: 10.1016/j.jeurceramsoc.2022.06.068
[61]
Gan X Z, Xu D, Lv Y D. Mater. Chem. Phys., 2020, 251: 123111.

doi: 10.1016/j.matchemphys.2020.123111
[62]
Ma D H, Zhu L Y, Liu B X. Ceram. Int., 2020, 46(3): 3400.

doi: 10.1016/j.ceramint.2019.10.050
[63]
Wang M, Feng J Z, Jiang Y G, Zhang Z M, Feng J. Mater. Rep., 2016(A2): 461.
(王苗, 冯军宗, 姜勇刚, 张忠明, 冯坚. 材料导报, 2016(A2): 461.)
[64]
Sheng C, Yu Y, Yu Y, Mi L, Tang G C, Song L X. J. Inorg. Mater., 2013, 28(7): 790-794.
[65]
Wang M, Feng J Z, Jiang Y G, Zhang Z M, Feng J. Heat Mass Transf., 2018, 54(9): 2793.

doi: 10.1007/s00231-018-2320-8
[66]
Li J, Zhang F, Zhang L J, Li W J, Zhao Y M. Transactions of Beijing Institute of Technology, 2019, 39(10):1051.
(李健, 张凡, 张丽娟, 李文静, 赵英民. 北京理工大学学报, 2019, 39(10): 1051.)
[67]
Zhu Z. Masteral Dissertation of Harbin Institute of Technology, 2021.
(朱振. 哈尔滨工业大学硕士论文, 2021.)
[68]
Ji Q Y, Zhang L, Jiao X L, Chen D R. ACS Appl. Mater. Interfaces, 2023, 15(5): 6848.

doi: 10.1021/acsami.2c20272
[69]
Zhang X X, Wang F, Dou L Y, Cheng X T, Si Y, Yu J Y, Ding B. ACS Nano, 2020, 14(11): 15616.

doi: 10.1021/acsnano.0c06423
[70]
Zhang X X, Cheng X T, Si Y, Yu J Y, Ding B. Chem. Eng. J., 2022, 433: 133628.

doi: 10.1016/j.cej.2021.133628
[71]
Liu F Q, Jiang Y G, Feng J Z, Li L J, Feng J. Ceram. Int., 2023, 10.1016/j.ceramint.2023.03.174.
[1] Yuanjia Xia, Guobin Chen, Shuang Zhao, Zhifang Fei, Zhen Zhang, Zichun Yang. Research Progress on Electromagnetic Wave Absorption of Silicon Carbide-Based Materials [J]. Progress in Chemistry, 2024, 36(1): 145-158.
[2] Jialin Huang, Yaohua Qin, Sheng Tang, Dezhao Kong, Chang Liu. Construction and Application in Food Contaminants Detection of Novel Optical Fiber Biosensors [J]. Progress in Chemistry, 2024, 36(1): 120-131.
[3] Song Yilong, Zhao Shuang, Li Kunfeng, Fei Zhifang, Chen Guobing, Yang Zichun. Preparation and Application of Direct Electrospun Fibrous Sponges [J]. Progress in Chemistry, 2023, 35(11): 1686-1700.
[4] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[7] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[8] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[9] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[10] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[11] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[12] Hang Jia, Yue Qiao, Yu Zhang, Qingxin Meng, Cheng Liu, Xigao Jian. Interface Modification Strategy of Basalt Fiber Reinforced Resin Matrix Composites [J]. Progress in Chemistry, 2020, 32(9): 1307-1315.
[13] Zhi Zhang, Chentao Zou, Shuijin Yang. Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation [J]. Progress in Chemistry, 2020, 32(9): 1427-1436.
[14] Guohua Xu, Kai Cheng, Chen Wang, Conggang Li. Multi-Hierarchical Structural Characterization of Biological Condensed Matters [J]. Progress in Chemistry, 2020, 32(8): 1231-1239.
[15] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.