中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (2): 167-176 DOI: 10.7536/PC230621 Previous Articles   Next Articles

• 14 •

Study on the Structure and Bonding Nature of Uranium Compounds Coordinated with Saturated Carbon

Ruiying Liu1,2, Qunyan Wu1(), Chengpeng Li2, Yi Ren3, Zhifang Chai1, Weiqun Shi1()   

  1. 1 Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
    2 College of Chemistry, Tianjin Normal University, Tianjin 300387, China
    3 Guangzhou Hexin Instrument Co., Ltd, Guangzhou 510535, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: wuqy@ihep.ac.cn (Qunyan Wu); shiwq@ihep.ac.cn (Weiqun Shi)
  • Supported by:
    National Science Fund for Distinguished Young Scholars(21925603)
Richhtml ( 11 ) PDF ( 62 ) Cited
Export

EndNote

Ris

BibTeX

The synthesis of uranium compounds has become one of the hot fields in organometallic chemistry. Compared with transition metal compounds, the synthesis and isolation of uranium compounds is extremely challenging, especially for the ones bearing uranium-carbon bonds. Carbene has lone pair electrons that easily combine with the empty orbitals of uranium. However, the carbon of benzyl or alkyl groups has no lone pair of electrons, which makes it difficult to combine with uranium. With the understanding of the electronic structure and bonding properties of uranium, some progress has been made in the study of uranium compounds coordinated with saturated carbon. This review systematically summarizes the structures and bonding properties of different valence states uranium compounds.

Contents

1 Introduction

2 Trivalent uranium carbon compounds

2.1 Trimethylsilyl based compounds

2.2 Cyclopentadienyl based compounds

2.3 Tripyrazole borate based compounds

3 Tetravalent uranium carbon compounds

3.1 Alkyl based compounds

3.2 Amino and amide based compounds

3.3 Ferrocene based compounds

3.4 Alkoxyl based compounds

4 Pentavalent uranium carbon compounds

5 Hexavalent uranium carbon compounds

6 Theoretical study of U-C bonding nature

7 Conclusion

Fig. 1 UⅢ[CH(SiMe3)2]3 and UⅢ[N(SiMe3)2]3 compounds
Fig. 2 [Cp3UR]- (R? = C4H9, CH3, C6H5) series of anions and [(C5Me5)2UⅢ]2(C6H6) compounds
Fig. 3 Tp*2UⅢ(CH2Ph) and Tp*2UⅢ(CH2Ph') compounds
Fig. 4 UⅣ(C5H5)3[MeC(CH2)2], UⅣ(Me5C5)2Me2, UⅣ(Me5C5)2 (CH2Ph)2 and UⅣ(η5-Me5C5)(CH2Ph)3 compounds
Fig. 5 Uranium benzyl and their derivatives Ph'-based compounds (Ph' = Ph, 2-picolyl, 2-p-iPr-CH2Ph, 2-p-tBu-CH2Ph, m-OMe-CH2Ph)
Fig. 6 [Li(TMEDA)]2[UⅣMe6] and (MesDABMe)UⅣ(CH2Ph)2 compounds
Fig. 7 [PhC(NSiMe3)2]3UⅣMe, (Ar[tBu]N)3UⅣSi-(SiMe3)3 and [CH2CH2NPtBu2]3NUⅣCH2TMS compounds
Fig. 8 [DIPPNCOCN]UⅣCH2Si(Me3)2 and [tBuNON]UⅣ (CH2SiMe3)2 compounds
Fig. 9 [fc(NSiMe2tBu)2UⅣ(CH2Ph)(OEt2)][BPh4], (NNTBS) UⅣ(CH2Ph)2, (NNTMS)UⅣ(CH2Ph)2 and (NNDMP)UⅣ(CH2Ph)2 compounds
Fig. 10 LiUⅣ(Me)[OCH(CMe3)2]4 and (XA2)UⅣ(CH2SiMe3)2 compounds
Fig. 11 [Li(THF)4][UⅤ(CH2SiMe3)6] and [Li(DME)3] [UⅤ(OtBu)2(CH2SiMe3)4] compounds
Fig. 12 [Li(DME)1.5]2[UⅥO2(CH2SiMe3)4], UⅥ(CH2SiMe3)6 and UⅥO(Me)[N(SiMe3)2]3 compounds
Fig. 13 Natural valence orbitals of U?C in the CUO molecule[66]. Copyright 2012, RSC
Fig. 14 Complexes of metallacyclopropenes and metallacy- clocumulenes of actinides (Pa-Pu)
Fig. 15 Covalency in An-N (An = Pa-Pu) triple bonds[76]. Copyright 2014, ACS
Fig. 16 Bonding differences and bonding nature of ML2 (M = Ce, Th, U, Np and Pu)[73]. Copyright 2018, RSC
[24]
Evans W J, Traina C A, Ziller J W. J. Am. Chem. Soc., 2009, 131(47): 17473.

doi: 10.1021/ja9075259
[25]
Zhang L, Fang B, Hou G H, Ai L, Ding W J, Walter M D, Zi G F. Dalton Trans., 2016, 45(41): 16441.

doi: 10.1039/C6DT03005J
[26]
Zhang L, Hou G H, Zi G F, Ding W J, Walter M D. J. Am. Chem. Soc., 2016, 138(15): 5130.

doi: 10.1021/jacs.6b01391
[27]
Zhang L, Fang B, Hou G H, Zi G F, Ding W J, Walter M D. Organometallics, 2017, 36(4): 898.

doi: 10.1021/acs.organomet.6b00936
[28]
Wang D Q, Ding W J, Hou G H, Zi G F, Walter M D. Chem., 2021, 27(22): 6767.
[29]
Bagnall K W, Edwards J. J. Organomet. Chem., 1974, 80(1): C14.

doi: 10.1016/S0022-328X(00)87028-X
[30]
Matson E M, Forrest W P, Fanwick P E, Bart S C. J. Am. Chem. Soc., 2011, 133(13): 4948.

doi: 10.1021/ja110158s
[31]
Matson E M, Fanwick P E, Bart S C. Organometallics, 2011, 30(21): 5753.

doi: 10.1021/om200612h
[32]
Matson E M, Crestani M G, Fanwick P E, Bart S C. Dalton Trans., 2012, 41(26): 7952.

doi: 10.1039/c2dt12439d
[33]
Matson E M, Forrest W P, Fanwick P E, Bart S C. Organometallics, 2013, 32(5): 1484.

doi: 10.1021/om301139h
[34]
Tatebe C J, Johnson S A, Zeller M, Bart S C. J. Organomet. Chem., 2018, 857: 152.

doi: 10.1016/j.jorganchem.2017.09.013
[35]
Marks T J, Seyam A M, Kolb J R. J. Am. Chem. Soc., 1973, 95(17): 5529.

doi: 10.1021/ja00798a018
[36]
Halstead G W, Baker E C, Raymond K N. J. Am. Chem. Soc., 1975, 97(11): 3049.

doi: 10.1021/ja00844a021
[37]
Evans W J, Kozimor S A, Ziller J W. Organometallics, 2005, 24(14): 3407.

doi: 10.1021/om050230s
[38]
Evans W J, Kozimor S A, Hillman W R, Ziller J W. Organometallics, 2005, 24: 4676.

doi: 10.1021/om050462r
[39]
Jantunen K C, Burns C J, Castro-Rodriguez I, Da Re R E, Golden J T, Morris D E, Scott B L, Taw F L, Kiplinger J L. Organometallics, 2004, 23(20): 4682.

doi: 10.1021/om0343824
[40]
Schelter E, Veauthier J, Graves C, John K, Scott B, Thompson J, Pool-Davis-Tournear J, Morris D, Kiplinger J. Chem., 2008, 14(26): 7782.
[41]
Mintz E A, Moloy K G, Marks T J, Day V W. J. Am. Chem. Soc., 1982, 104(17): 4692.

doi: 10.1021/ja00381a039
[42]
Kiplinger J L, Morris D E, Scott B L, Burns C J. Organometallics, 2002, 21(26): 5978.

doi: 10.1021/om0206610
[43]
Kraft S J, Fanwick P E, Bart S C. J. Am. Chem. Soc., 2012, 134(14): 6160.

doi: 10.1021/ja209524u
[44]
Johnson S A, Kiernicki J J, Fanwick P E, Bart S C. Organometallics, 2015, 34(12): 2889.

doi: 10.1021/acs.organomet.5b00212
[45]
Johnson S A, Higgins R F, Abu-Omar M M, Shores M P, Bart S C. Organometallics, 2017, 36: 3491.

doi: 10.1021/acs.organomet.7b00438
[46]
Wedler M, Knösel F, Edelmann F T, Behrens U. Chem. Ber., 1992, 125(6): 1313.

doi: 10.1002/cber.v125:6
[47]
Diaconescu P L, Odom A L, Agapie T, Cummins C C. Organometallics, 2001, 20(24): 4993.

doi: 10.1021/om010575k
[48]
Sun X, Gong X X, Xie Z Y, Zhu C Q. Chin. J. Chem., 2022, 40(17): 2047.

doi: 10.1002/cjoc.v40.17
[49]
Jantunen K C, Haftbaradaran F, Katz M J, Batchelor R J, Schatte G, Leznoff D B. Dalton Trans., 2005, (18): 3083.
[50]
Monreal M J, Diaconescu P L. Organometallics, 2008, 27(8): 1702.

doi: 10.1021/om700541u
[51]
Duhović S, Oria J V, Odoh S O, Schreckenbach G, Batista E R, Diaconescu P L. Organometallics, 2013, 32(20): 6012.

doi: 10.1021/om400521k
[52]
Morris D E, Da Re R E, Jantunen K C, Castro-Rodriguez I, Kiplinger J L. Organometallics, 2004, 23(22): 5142.

doi: 10.1021/om049634v
[53]
Stewart J L, Andersen R A. J. Chem. Soc., hem. Commun., 1987, (24): 1846.
[54]
Andreychuk N R, Ilango S, Vidjayacoumar B, Emslie D J H, Jenkins H A. Organometallics, 2013, 32(5): 1466.

doi: 10.1021/om301136f
[55]
Sigurdson E R, Wilkinson G. J. Chem. Soc., alton Trans., 1977, (8): 812.
[56]
Fortier S, Walensky J R, Wu G, Hayton T W. J. Am. Chem. Soc., 2011, 133: 11732.

doi: 10.1021/ja204151v
[57]
Johnson S A, Bart S C. Dalton Trans., 2015, 44(17): 7710.

doi: 10.1039/C4DT01621A
[58]
Seaman L A, Hrobárik P, Schettini M F, Fortier S, Kaupp M, Hayton T W. Angew. Chem. Int. Ed., 2013, 52(11): 3259.

doi: 10.1002/anie.v52.11
[59]
Lewis A J, Carroll P J, Schelter E J. J. Am. Chem. Soc., 2013, 135(35): 13185.

doi: 10.1021/ja406610r
[60]
Seth M, Dolg M, Fulde P, Schwerdtfeger P. J. Am. Chem. Soc., 1995, 117(24): 6597.

doi: 10.1021/ja00129a026
[61]
Chi X W, Wu Q Y, Yu J P, Zhang Q, Chai Z F, Shi W Q. Prog. Chem., 2019, 31: 1341.
[62]
Wang D Q, van Gunsteren W F. Prog. Chem., 2011, 23: 1566.
[63]
Roos B O, Widmark P O, Gagliardi L. Faraday Disc., 2003, 124: 57.

doi: 10.1039/b211646b
[64]
Wang X F, Andrews L, Malmqvist P Å, Roos B O, Gonçalves A P, Pereira C C L, Marçalo J, Godart C, Villeroy B. J. Am. Chem. Soc., 2010, 132(24): 8484.

doi: 10.1021/ja102475t
[65]
Lyon J T, Hu H S, Andrews L, Li J. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(48): 18919.

doi: 10.1073/pnas.0707035104
[66]
Hu H S, Qiu Y H, Xiong X G, Eugen Schwarz W H, Li J. Chem. Sci., 2012, 3(9): 2786.

doi: 10.1039/c2sc20329d
[67]
Han J, Dai X, Cheng C, Xin M S, Wang Z G, Huai P, Zhang R Q. J. Phys. Chem. C, 2013, 117(50): 26849.

doi: 10.1021/jp4102493
[68]
de Melo G F, Vasiliu M, Liu G X, Ciborowski S, Zhu Z G, Blankenhorn M, Harris R, Martinez-Martinez C, Dipalo M, Peterson K A, Bowen K H, Dixon D A. J. Phys. Chem. A, 2022, 126(50): 9392.

doi: 10.1021/acs.jpca.2c06978
[69]
Jiang H J, Yu X J, Guo M, Yao Y R, Meng Q Y, Echegoyen L, Autschbach J, Chen N. J. Am. Chem. Soc., 2023, 145(10): 5645.

doi: 10.1021/jacs.2c10231
[70]
Mullane K C, Hrobárik P, Cheisson T, Manor B C, Carroll P J, Schelter E J. Inorg. Chem., 2019, 58(7): 4152.

doi: 10.1021/acs.inorgchem.8b03175
[71]
Kirker I, Kaltsoyannis N. Dalton Trans., 2011, 40(1): 124.

doi: 10.1039/C0DT01018A
[72]
Kelley M P, Popov I A, Jung J, Batista E R, Yang P. Nat. Commun., 2020, 11: 1558.

doi: 10.1038/s41467-020-15197-w
[73]
Wu Q Y, Cheng Z P, Lan J H, Wang C Z, Chai Z F, Gibson J K, Shi W Q. Dalton Trans., 2018, 47(36): 12718.

doi: 10.1039/C8DT02702A
[74]
Chi X W, Wu Q Y, Lan J H, Wang C Z, Zhang Q, Chai Z F, Shi W Q. Organometallics, 2019, 38(9): 1963.

doi: 10.1021/acs.organomet.9b00059
[1]
Gilman H, Jones R G, Bindschadler E, Blume D, Karmas G, Martin G A Jr, Nobis J F, Thirtle J R, Yale H L, Yoeman F A. J. Am. Chem. Soc., 1956, 78(12): 2790.

doi: 10.1021/ja01593a038
[2]
Seaman L A, Walensky J R, Wu G, Hayton T W. Inorg. Chem., 2013, 52(7): 3556.

doi: 10.1021/ic300867m
[3]
Zucchini U, Giannini U, Albizzati E, D’Angelo R. J. Chem. Soc. D, 1969(20): 1174.
[4]
Ballard D G H, van Lienden P W. Makromol. Chem., 1972, 154(1): 177.

doi: 10.1002/macp.02.v154:1
[5]
Köhler E, Brüser W, Thiele K H. J. Organomet. Chem., 1974, 76(2): 235.

doi: 10.1016/S0022-328X(00)84634-3
[6]
Shannon R D. Acta Crystallogr. Sect. A, 1976, 32(5): 751.

doi: 10.1107/S0567739476001551
[7]
Drożdżyński J. Coord. Chem. Rev., 2005, 249(21/22): 2351.

doi: 10.1016/j.ccr.2005.05.016
[8]
Berthet J C, Ephritikhine M. Coord. Chem. Rev., 1998, 178/180: 83.

doi: 10.1016/S0010-8545(98)00061-7
[9]
Wang K X, Chen J S. Acc. Chem. Res., 2011, 44(7): 531.

doi: 10.1021/ar200042t
[10]
Gardner B M, Liddle S T. Eur. J. Inorg. Chem., 2013, 2013(22/23): 3753.

doi: 10.1002/ejic.v2013.22/23
[11]
Ephritikhine M. Comptes Rendus Chim., 2013, 16(4): 391.

doi: 10.1016/j.crci.2012.12.001
[12]
Marks T J, Seyam A M. J. Am. Chem. Soc., 1972, 94(18): 6545.

doi: 10.1021/ja00773a050
[13]
Clark D L, Sattelberger A P, Bott S G, Vrtis R N. Inorg. Chem., 1989, 28(10): 1771.

doi: 10.1021/ic00309a004
[14]
Avens L R, Bott S G, Clark D L, Sattelberger A P, Watkin J G, Zwick B D. Inorg. Chem., 1994, 33(10): 2248.

doi: 10.1021/ic00088a030
[15]
Marks T J, Seyam A M. J. Organomet. Chem., 1974, 67(1): 61.

doi: 10.1016/S0022-328X(00)93684-2
[16]
Manriquez J M, Fagan P J, Marks T J. J. Am. Chem. Soc., 1978, 100(12): 3939.

doi: 10.1021/ja00480a053
[17]
Van der Sluys W G, Burns C J, Sattelberger A P. Organometallics, 1989, 8(3): 855.

doi: 10.1021/om00105a051
[18]
Ortiz J V, Hay P J, Martin R L. J. Am. Chem. Soc., 1992, 114(7): 2736.

doi: 10.1021/ja00033a068
[19]
Andersen R A. Inorg. Chem., 1979, 18(6): 1507.

doi: 10.1021/ic50196a021
[20]
Stewart J L, Andersen R A. Polyhedron, 1998, 17(5/6): 953.

doi: 10.1016/S0277-5387(97)00244-1
[21]
Arnaudet L, Charpin P, Folcher G, Lance M, Nierlich M, Vigner D. Organometallics, 1986, 5(2): 270.

doi: 10.1021/om00133a017
[22]
Manriquez J M, Fagan P J, Marks T J, Vollmer S H, Day C S, Day V W. J. Am. Chem. Soc., 1979, 101(17): 5075.

doi: 10.1021/ja00511a054
[23]
Evans W J, Kozimor S A, Ziller J W, Kaltsoyannis N. J. Am. Chem. Soc., 2004, 126(44): 14533.

doi: 10.1021/ja0463886
[75]
Li A L, Zhang N X, Wu Q Y, Wang C Z, Lan J H, Nie C M, Chai Z F, Shi W Q. Organometallics, 2021, 40(11): 1719.

doi: 10.1021/acs.organomet.1c00196
[76]
Wu Q Y, Wang C Z, Lan J H, Xiao C L, Wang X K, Zhao Y L, Chai Z F, Shi W Q. Inorg. Chem., 2014, 53(18): 9607.

doi: 10.1021/ic501006p
[77]
Wu Q Y, Lan J H, Wang C Z, Zhao Y L, Chai Z F, Shi W Q. J. Phys. Chem. A, 2015, 119(5): 922.

doi: 10.1021/jp512950j
[78]
Yu J P, Liu K, Wu Q Y, Li B, Kong X H, Hu K Q, Mei L, Yuan L Y, Chai Z F, Shi W Q. Chin. J. Chem., 2021, 39(8): 2125.

doi: 10.1002/cjoc.v39.8
[79]
Liu K, Chi X W, Guo Y, Wu Q Y, Hu K Q, Mei L, Chai Z F, Yu J P, Shi W Q. Inorg. Chem., 2022, 61(45): 17993.

doi: 10.1021/acs.inorgchem.2c02263
[80]
Wu Q Y, Wang C Z, Lan J H, Chai Z F, Shi W Q. Dalton Trans., 2020, 49(44): 15895.

doi: 10.1039/D0DT02909B
[81]
Liu K, Yu J P, Wu Q Y, Tao X B, Kong X H, Mei L, Hu K Q, Yuan L Y, Chai Z F, Shi W Q. Organometallics, 2020, 39(22): 4069.

doi: 10.1021/acs.organomet.0c00638
[82]
Chi X W, Wu Q Y, Hao Q, Lan J H, Wang C Z, Zhang Q, Chai Z F, Shi W Q. Organometallics, 2018, 37(21): 3678.

doi: 10.1021/acs.organomet.8b00391
[83]
Chi X W, Wu Q Y, Wang C Z, Yu J P, Liu K, Chi R A, Chai Z F, Shi W Q. Organometallics, 2022, 41(11): 1304.

doi: 10.1021/acs.organomet.2c00024
[84]
King D M, Tuna F, McInnes E J L, McMaster J, Lewis W, Blake A J, Liddle S T. Science, 2012, 337(6095): 717.

doi: 10.1126/science.1223488
[85]
King D M, Tuna F, McInnes E J L, McMaster J, Lewis W, Blake A J, Liddle S T. Nat. Chem., 2013, 5(6): 482.

doi: 10.1038/nchem.1642
[86]
Wu Q Y, Lan J H, Wang C Z, Cheng Z P, Chai Z F, Gibson J K, Shi W Q. Dalton Trans., 2016, 45(7): 3102.

doi: 10.1039/C5DT04540A
[87]
Gagliardi L, Roos B O. Chem. Soc. Rev., 2007, 36(6): 893.

doi: 10.1039/b601115m
[88]
Hu H S, Wu G S, Li J. J. Nucl. Radiochem., 2009, 31: 25.
[89]
Su J, Li J. Prog. Chem., 2011, 23: 1329.
No related articles found!