中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (2): 177-186 DOI: 10.7536/PC230613 Previous Articles   Next Articles

• 12 •

In-situ Preparation Methods of Hydrogen Peroxide via Water Oxdation

Jingze Yu1, Tengfeng Xie2()   

  1. 1 College of New Energy and Environment, Jilin University, Changchun 130021, China
    2 College of Chemistry, Jilin University, Changchun 130012, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: xietf@jlu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22172057)
Richhtml ( 9 ) PDF ( 127 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen peroxide (H2O2) is an important chemical that may be used as a clean disinfectant. For scale application, H2O2 is produced primarily by the anthraquinone process. The necessary transportation and storage processes bring explosion risks, so it is urgent to develop in-situ preparation methods. Electrochemical and photocatalytic reduction of oxygen to product H2O2 have received wide attention, but these reactions are carried out at the gas-liquid-solid interface. This three-phase reaction requires complex equipment and sequentially limits large-scale production. Another equally important pathway for in-situ H2O2 production is the oxidation of water which needs only solid-liquid two-phase interface. This paper summarizes the common methods of oxidizing water to prepare H2O2, such as electrochemistry and photocatalysis, and focuses on the recent new methods of in-situ H2O2 preparation, including thermal catalysis, ultrasonic piezoelectricity, plasma and microdroplet method. These methods provide the references for in-situ H2O2 production and in particular its utilization in the field of disinfection.

Contents

1 Industrial process for the production of hydrogen peroxide

2 In-situ production of hydrogen peroxide via oxygen reduction reaction

3 In-situ production of hydrogen peroxide via water oxidation reaction

3.1 Electrochemical and photocatalytic hydrogen peroxide generation from water oxidation

3.2 Thermocatalytic hydrogen peroxide generation

3.3 Ultrasonic piezoelectrical hydrogen peroxide generation

3.4 Electrical discharge plasma hydrogen peroxide generation

3.5 Generation of hydrogen peroxide from aqueous microdroplets

4 Conclusion and outlook

Fig.1 Schematic diagram of electrochemical reactor and reaction route for H2O2 production
Fig.2 Schematic diagram of photo- electrochemical reactor and reaction route for H2O2 production
Fig.3 Schematic diagram of ultrasonic-driven generation of H2O2 over g-C3N4
Table 1 Performance comparison of in-situ H2O2 preparation via water oxdation
[1]
Shi X J, Back S, Gill T M, Siahrostami S, Zheng X L. Chem, 2021, 7(1): 38.

doi: 10.1016/j.chempr.2020.09.013
[2]
Brillas E, Sirés I, Oturan M A. Chem. Rev., 2009, 109(12): 6570.

doi: 10.1021/cr900136g
[3]
Ali S, Muzslay M, Bruce M, Jeanes A, Moore G, Wilson A P R. J. Hosp. Infect., 2016, 93(1): 70.

doi: 10.1016/j.jhin.2016.01.016
[4]
Otter J A, Yezli S, Perl T M, Barbut F, French G L. J. Hosp. Infect., 2013, 83: 1.

doi: 10.1016/j.jhin.2012.10.002
[5]
Sun S X, Fan X X, Sun M J, Zhang H B, Tian L L, Zhang P P, Sun S F. Chin. J. Disinfect., 2022, 39(7): 494.
孙世雄, 樊晓旭, 孙明军, 张皓博, 田莉莉, 张培培, 孙淑芳. 中国消毒学杂志, 2022, 39(7): 494.)
[6]
Caruso A A, Del Prete A, Lazzarino A I. Med. Hypotheses, 2020, 144: 109910.

doi: 10.1016/j.mehy.2020.109910
[7]
Shen M-H, Singh R K. LWT-Food Sci. Technol., 2021, 142: 110986.

doi: 10.1016/j.lwt.2021.110986
[8]
Silva K J S, Sabogal-Paz L P. Water Air Soil Pollut., 2021, 232(12): 483.

doi: 10.1007/s11270-021-05434-3
[9]
Yang M F, Feng B, Bai L G, Zhao X D. Chem. Propellants Polym. Mater., 2024, 22(1): 25.
杨盟飞, 冯彬, 白立光, 赵晓东. 化学推进剂与高分子材料, 2024, 22(1): 25.)
[10]
Ingle A A, Ansari S Z, Shende D Z, Wasewar K L, Pandit A B. Environ. Sci. Pollut. Res., 2022, 29(57): 86468.

doi: 10.1007/s11356-022-21354-z
[11]
Li H B, Zheng B, Pan Z Y, Zong B N, Qiao M H. Front. Chem. Sci. Eng., 2018, 12(1): 124.

doi: 10.1007/s11705-017-1676-5
[12]
Ciriminna R, Albanese L, Meneguzzo F, Pagliaro M. Chem. Sus. Chem., 2016, 9(24): 3374.

doi: 10.1002/cssc.v9.24
[13]
Liu H, Xue F F. China Pulp & Paper Industry., 2022, 43(6): 24.
(刘嚆, 薛飞飞. 中华纸业, 2022, 43(6): 24.)
[14]
Liang H R, Wang L, Liu G Z. Chemical Industry and Engineering Progress., 2021, 40(4): 2060.
(梁海瑞, 王涖, 刘国柱. 化工进展, 2021, 40(4): 2060.)
[15]
Wang N, Ma S B, Zuo P J, Duan J Z, Hou B R. Adv. Sci., 2021, 8(15): 2100076.
[16]
Li N, Huang C C, Wang X, Feng Y J, An J K. Chem. Eng. J., 2022, 450: 138246.

doi: 10.1016/j.cej.2022.138246
[17]
Shen P K. Fundamental and Aplications of Electrochemical Oxygen Reduction. Nanning: Guangxi Science and technology press, 2018. 11.
(沈培康. 电化学氧还原的理论基础和应用技术. 南宁: 广西科学技术出版社, 2018. 11.)
[18]
Ali I, Van Eyck K, De Laet S, Dewil R. Chemosphere, 2022, 308: 136127.

doi: 10.1016/j.chemosphere.2022.136127
[19]
Li D, Zheng T, Liu Y L, Hou D, Yao K K, Zhang W, Song H R, He H Y, Shi W, Wang L, Ma J. J. Hazard. Mater., 2020, 396: 122591.
[20]
Lima V N, Rodrigues C S D, Sampaio E F S, Madeira L M. J. Environ. Manag., 2020, 265: 110501.
[21]
Pérez J F, Galia A, Rodrigo M A, Llanos J, Sabatino S, Sáez C, Schiavo B, Scialdone O. Electrochim. Acta, 2017, 248: 169.

doi: 10.1016/j.electacta.2017.07.116
[22]
Santos G O S, Cordeiro-Junior P J M, Sánchez-Montes I, Souto R S, Kronka M S, Lanza M R V. Curr. Opin. Electrochem., 2022, 36: 101124.
[23]
Cao P K, Quan X, Zhao K, Zhao X Y, Chen S, Yu H T. ACS Catal., 2021, 11(22): 13797.

doi: 10.1021/acscatal.1c03236
[24]
Sui W B, Li W Z, Zhang Z S, Wu W X, Xu Z Y, Wang Y. J. Power Sources, 2023, 556: 232438.

doi: 10.1016/j.jpowsour.2022.232438
[25]
Iglesias D, Giuliani A, Melchionna M, Marchesan S, Criado A, Nasi L, Bevilacqua M, Tavagnacco C, Vizza F, Prato M, Fornasiero P. Chem., 2018, 4(1): 106.

doi: 10.1016/j.chempr.2017.10.013
[26]
Sun Y Y, Sinev I, Ju W, Bergmann A, Dresp S, Kühl S, Spöri C, Schmies H, Wang H, Bernsmeier D, Paul B, Schmack R, Kraehnert R, Roldan Cuenya B, Strasser P. ACS Catal., 2018, 8(4): 2844.

doi: 10.1021/acscatal.7b03464
[27]
Zhu W Y, Chen S W. Electroanalysis, 2020, 32(12): 2591.

doi: 10.1002/elan.v32.12
[28]
Li S L, Ma J X, Xu F, Wei L Y, He D. Chem. Eng. J., 2023, 452: 139371.

doi: 10.1016/j.cej.2022.139371
[29]
Tian Y H, Deng D J, Xu L, Li M, Chen H, Wu Z Z, Zhang S Q. Nano Micro. Lett., 2023, 15(1): 122.

doi: 10.1007/s40820-023-01067-9
[30]
Shin H, Lee S, Sung Y E. Curr. Opin. Electrochem., 2023, 38: 101224.
[31]
Mavrikis S, Perry S C, Leung P K, Wang L, Ponce de León C. ACS Sustainable Chem. Eng., 2021, 9(1): 76.

doi: 10.1021/acssuschemeng.0c07263
[32]
Pangotra D, Csepei L I, Roth A, Ponce de León C, Sieber V, Vieira L. Appl. Catal. B Environ., 2022, 303: 120848.

doi: 10.1016/j.apcatb.2021.120848
[33]
Espinoza-Montero P J, Alulema-Pullupaxi P, Frontana-Uribe B A, Barrera-Diaz C E. Curr. Opin. Solid State Mater. Sci., 2022, 26(3): 100988.

doi: 10.1016/j.cossms.2022.100988
[34]
Shi X J, Siahrostami S, Li G L, Zhang Y R, Chakthranont P, Studt F, Jaramillo T F, Zheng X L, Nørskov J K. Nat. Commun., 2017, 8: 701.

doi: 10.1038/s41467-017-00585-6
[35]
Xia C, Back S, Ringe S, Jiang K, Chen F H, Sun X M, Siahrostami S, Chan K R, Wang H T. Nat. Catal., 2020, 3(2): 125.

doi: 10.1038/s41929-019-0402-8
[36]
Wang Z L, Xu W H, Tan G Y, Duan X X, Yuan B C, Sendeku M G, Liu H, Li T S, Wang F M, Kuang Y, Sun X M. Sci. Bull., 2023, 68(6): 613.

doi: 10.1016/j.scib.2023.03.003
[37]
Fan L, Bai X W, Xia C, Zhang X, Zhao X H, Xia Y, Wu Z Y, Lu Y Y, Liu Y Y, Wang H T. Nat. Commun., 2022, 13: 2668.

doi: 10.1038/s41467-022-30251-5
[38]
Dantas L R, Wollmann L C, Suss P H, Kraft L, Ribeiro V S T, Tuon F F. Cell Tissue Bank., 2021, 22(4): 643.

doi: 10.1007/s10561-021-09938-4
[39]
Sun Y Y, Han L, Strasser P. Chem. Soc. Rev., 2020, 49(18): 6605.

doi: 10.1039/D0CS00458H
[40]
Cheng H, Cheng J, Wang L, Xu H X. Chem. Mater., 2022, 34(10): 4259.

doi: 10.1021/acs.chemmater.2c00936
[41]
Zhang E H, Zhu Q H, Huang J H, Liu J, Tan G Q, Sun C J, Li T, Liu S, Li Y M, Wang H Z, Wan X D, Wen Z H, Fan F T, Zhang J T, Ariga K. Appl. Catal. B Environ., 2021, 293: 120213.

doi: 10.1016/j.apcatb.2021.120213
[42]
Wang L X, Zhang J J, Zhang Y, Yu H G, Qu Y H, Yu J G. Small, 2022, 18(8): 2104561.
[43]
Hou H L, Zeng X K, Zhang X W. Angew. Chem. Int. Ed., 2020, 59(40): 17356.

doi: 10.1002/anie.v59.40
[44]
Chen Z, Yao D C, Chu C C, Mao S. Chem. Eng. J., 2023, 451: 138489.

doi: 10.1016/j.cej.2022.138489
[45]
Hargreaves J S J, Chung Y M, Ahn W S, Hisatomi T, Domen K, Kung M C, Kung H H. Appl. Catal. A: Gen., 2020, 594: 117419.

doi: 10.1016/j.apcata.2020.117419
[46]
Hargreaves J S J, Chung Y M, Ahn W S, Hisatomi T, Domen K, Kung M C, Kung H H. Appl. Catal. A: Gen., 2020, 594: 117419.

doi: 10.1016/j.apcata.2020.117419
[47]
Ketchie W C, Murayama M, Davis R J. Top. Catal., 2007, 44(1): 307.

doi: 10.1007/s11244-007-0304-x
[48]
Kung M C, Kung H H. Chin. J. Catal., 2019, 40(11): 1673.

doi: 10.1016/S1872-2067(19)63327-9
[49]
Lin Y J, Khan I, Saha S, Wu C C, Barman S R, Kao F C, Lin Z H. Nat. Commun., 2021, 12: 180.

doi: 10.1038/s41467-020-20445-0
[50]
Wang K F, Shao D K, Zhang L, Zhou Y Y, Wang H P, Wang W Z. J. Mater. Chem. A, 2019, 7(35): 20383.

doi: 10.1039/C9TA06251C
[51]
Hong K S, Xu H F, Konishi H, Li X C. J. Phys. Chem. C, 2012, 116(24): 13045.

doi: 10.1021/jp211455z
[52]
Yang H Y, Wu J, Chen Z R, Zou K, Liang R H, Kang Z H, Menezes P W, Chen Z L. Energy Environ. Sci., 2023, 16(1): 210.

doi: 10.1039/D2EE02554J
[53]
Wang K, Zhang M Q, Li D G, Liu L H, Shao Z P, Li X Y, Arandiyan H, Liu S M. Nano Energy, 2022, 98: 107251.

doi: 10.1016/j.nanoen.2022.107251
[54]
Wang C Y, Chen F, Hu C, Ma T Y, Zhang Y H, Huang H W. Chem. Eng. J., 2022, 431: 133930.

doi: 10.1016/j.cej.2021.133930
[55]
Zhou X F, Yan F, Lyubartsev A, Shen B, Zhai J W, Conesa J C, Hedin N. Adv. Sci., 2022, 9(18): 2105792.
[56]
Zhou X F, Shen B, Zhai J W, Conesa J C. Small Meth., 2021, 5(6): 2100269.
[57]
Ma Y L, Wang B, Zhong Y Z, Gao Z Y, Song H L, Zeng Y J, Wang X Y, Huang F, Li M R, Wang M Y. Chem. Eng. J., 2022, 446: 136958.

doi: 10.1016/j.cej.2022.136958
[58]
Yan W, Sun J X, Hu T, Tian S H, Feng J X, Xiong Y. Appl. Catal. B Environ., 2023, 323: 122143.

doi: 10.1016/j.apcatb.2022.122143
[59]
Wang L C, Chen Z S, Zhang Y H, Liu C, Yuan J P, Liu Y L, Ge W Y, Lin S, An Q, Feng Z G. Chem., 2022, 17(15): e202200278.
[60]
Xi W H, Lan Y, Shen J, Han W, Cheng C. J. Anhui Univ. Nat. Sci. Ed., 2022, 46(3): 3.
奚文灏, 兰彦, 沈洁, 韩伟, 程诚. 安徽大学学报(自然科学版), 2022, 46(3): 3.)
[61]
Burlica R, Shih K Y, Locke B R. Ind. Eng. Chem. Res., 2010, 49(14): 6342.

doi: 10.1021/ie100038g
[62]
Ranieri P, McGovern G, Tse H, Fulmer A, Kovalenko M, Nirenberg G, Miller V, Rabinovich A, Fridman A, Fridman G. IEEE Trans. Plasma Sci., 2019, 47(1): 395.

doi: 10.1109/TPS.2018.2878971
[63]
Takeuchi N, Ishibashi N. Plasma Sources Sci. Technol., 2018, 27(4): 045010.

doi: 10.1088/1361-6595/aabd17
[64]
Wang H H, Wandell R J, Tachibana K, Voráč J, Locke B R. J. Phys. D: Appl. Phys., 2019, 52(7): 075201.

doi: 10.1088/1361-6463/aaf132
[65]
Shang K F, Li J, Wang X J, Yao D, Lu N, Jiang N, Wu Y. Jpn. J. Appl. Phys., 2016, 55(1S): 01AB02.
[66]
Tachibana K, Nakamura T. Jpn. J. Appl. Phys., 2019, 58(4): 046001.

doi: 10.7567/1347-4065/aafe73
[67]
Cameli F, Dimitrakellis P, Chen T Y, Vlachos D G. ACS Sustainable Chem. Eng., 2022, 10(5): 1829.

doi: 10.1021/acssuschemeng.1c06973
[68]
Chen B L, Xia Y, He R X, Sang H Q, Zhang W C, Li J, Chen L F, Wang P, Guo S S, Yin Y G, Hu L G, Song M Y, Liang Y, Wang Y W, Jiang G B, Zare R N. Proc. Natl. Acad. Sci. U. S. A., 2022, 119(32): e2209056119.
[69]
Ben-Amotz D. Science, 2022, 376(6595): 800.

doi: 10.1126/science.abo3398
[70]
Kathmann S M, Kuo I F W, Mundy C J. J. Am. Chem. Soc., 2008, 130(49): 16556.

doi: 10.1021/ja802851w
[71]
Wei H R, Vejerano E P, Leng W N, Huang Q S, Willner M R, Marr L C, Vikesland P J. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(28): 7272.

doi: 10.1073/pnas.1720488115
[72]
Lee J K, Walker K L, Han H S, Kang J, Prinz F B, Waymouth R M, Nam H G, Zare R N. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(39): 19294.

doi: 10.1073/pnas.1911883116
[73]
Zhu C Q, Francisco J S. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(39): 19222.

doi: 10.1073/pnas.1913311116
[74]
Cao T T, Tong W S, Feng F, Zhang S T, Li Y N, Liang S J, Wang X, Chen Z S, Zhang Y H. Chem. Eng. J., 2022, 431: 134005.

doi: 10.1016/j.cej.2021.134005
[1] Anqi Chen, Zhiwei Jiang, Juntao Tang, Guipeng Yu. Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials [J]. Progress in Chemistry, 2024, 36(3): 357-366.
[2] Yining Li, Minghao Sui. Peracetic Acid-Based Advanced Oxidation Processes and Its Applications in Water Disinfection [J]. Progress in Chemistry, 2023, 35(8): 1258-1265.
[3] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[4] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[5] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[6] Lai Lyu, Chun Hu. Heterogeneous Fenton Catalytic Water Treatment Technology and Mechanism [J]. Progress in Chemistry, 2017, 29(9): 981-999.
[7] Hongtao Yu, Shuo Chen, Xie Quan*, Zhenhua Zhang. The Mechanism, Materials and Reactors of Photocatalytic Disinfection in Water and Wastewater Treatment [J]. Progress in Chemistry, 2017, 29(9): 1030-1041.
[8] Wang Yanbin, Zhao Hongying, Zhao Guohua, Wang Yujing, Yang Xiuchun. Iron Compound-Based Heterogeneous Fenton Catalytic Oxidation Technology [J]. Progress in Chemistry, 2013, 25(08): 1246-1259.
[9] Zhang Guofu, Wen Xin, Wang Yong, Mo Weimin, Ding Chengrong. Recent Advances in Oxidative Deoximation [J]. Progress in Chemistry, 2012, 24(0203): 361-369.
[10] . Activated Carbon Catalyzed Peroxide Degradation of Organic Pollutants in Water [J]. Progress in Chemistry, 2010, 22(10): 2071-2078.
[11] Han Guangye, Li Shuqin,?Kuang Tingyun. Photoassembly of Manganese Cluster of Photosynthetic Oxygen-Evolving Complex [J]. Progress in Chemistry, 2010, 22(08): 1556-1565.
[12] . Environmental-Friendly Synthesis of Adipic Acid by Catalytic Oxidation [J]. Progress in Chemistry, 2009, 21(04): 663-671.
[13] . Mechanism of Selective Oxidations of Hydrocarbons with Hydrogen Peroxide Catalyzed by Metalloporphyrins [J]. Progress in Chemistry, 2008, 20(11): 1635-1641.
[14] Lang Xianjun1,2 Lu Ruiling1,2 Li Zhen1 Xia Chungu1**. Liquid Phase Oxidation Reactions Catalyzed by Polyoxometalates [J]. Progress in Chemistry, 2008, 20(04): 469-482.
[15] Zhang Xiongfu. Direct Hydroxylation of Benzene to Phenol [J]. Progress in Chemistry, 2008, 20(0203): 386-395.