中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (2): 244-255 DOI: 10.7536/PC230601 Previous Articles   Next Articles

• 16 •

Hydrogen Spillover Effect in Electrocatalytic Hydrogen Evolution Reaction

Yan Liu1, Yaqi Liu1, Liwen Xing2(), Ke Wu2, Jianjun Ji3, Yongjun Ji1()   

  1. 1 School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
    2 College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
    3 Guangshengyuan Traditional Chinese Medicine Co. LTD, Datong 037000, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: xingliwen@btbu.edu.cn(Liwen Xing);yjji@btbu.edu.cn(Yongjun Ji)
  • Supported by:
    Beijing Technology and Business University 2023 Graduate Student Research Ability Enhancement Program(19008023027); Research Foundation for Youth Scholars of Beijing Technology and Business University(QNJJ2022-22); Research Foundation for Youth Scholars of Beijing Technology and Business University(QNJJ2022-23); R&D Program of Beijing Municipal Education Commission(KM202310011005); National Natural Science Foundation of China(21978299); Research Foundation for Advanced Talents of Beijing Technology and Business University(19008020159)
Richhtml ( 9 ) PDF ( 92 ) Cited
Export

EndNote

Ris

BibTeX

Water electrolysis for hydrogen harvesting has become a research hotspot in both academia and industry due to its low carbon emissions, high energy efficiency, and high purity, which offer significant advantages over the majority of hydrogen production technologies. Thereinto, the electrocatalytic hydrogen reaction (HER) is at the core, which aways involves a multi-step hydrogen transfer process and multiple active sites working together. However, catalytic correlations between those active sites and potential hydrogen spillover effects involved are often overlooked. In this paper, we first review the hydrogen evolving properties and reaction mechanisms in electrocatalytic systems such as transition metal oxides, phosphides, and sulfides. By combining traditional theories of thermal catalysis, active sites involved in hydrogen spillover are then conceptually summarized into both the primary and secondary active sites, elucidating their catalytic relevance and functional differences. This paper will not only provide a design concept for the creation of efficient and inexpensive electrocatalysts for hydrogen evolution, but also serve as a useful reference for further studies of hydrogen transfer behaviors in other hydrogen-involved electrocatalytic reactions.

Contents

1 Introduction

2 Electrocatalyst for hydrogen spillover

2.1 Metal oxide

2.2 Metal phosphide

2.3 Metal sulfides

3 Conclusion and outlook

Fig.1 Variation of exchange current density (j0) and active hydrogen adsorption free energy for different materials [4]. Copyright 2015, Angew. Chem. Int. Ed.
Fig.2 Schematic diagram of hydrogen Spillover during HER in alkaline environment
Fig.3 Schematic diagram of hydrogen spillover effect for Pt SA/m-WO3-x and Pt NP/m-WO3-x[23]. Copyright 2019, Angew. Chem. Int. Ed.
Fig.4 Schematic diagram of the hydrogen spillover pathway on the WSO surface[37]. Copyright 2022, ACS Appl. Mater. Interfaces.
Fig.5 (a) Overpotential )left) and Tafel slope (right) at a current density of 10 mA·cm-2, inset is a schematic representation of the HER mechanism; (b) Adsorption energy of H*+OH*, OH* and H* at different active sites, inset is a schematic representation of the chemistry of hydrogen transfer in NiO/Ni and Mo-NiO/Ni electrochemical reactions[45]. Copyright 2019, ACS Energy Lett.
Fig.6 (a) Schematic diagram of hydrogen spillover on HOM-NiO/Cu; (b) The derived curves of hydrogen adsorption capacitance (Cφ) vs overpotential (η) [53]. Copyright 2021, ACS Nano.
Fig.7 (a) Schematic diagram showing the photogenerated charge separation by an internal electric field at the RuO2/CeO2 heterojunction and the incorporation of platinum atoms on RuCeOx; (b) Transfer path of H* on Pt/RuCeOx-PA. [42]. Copyright 2020, Angew. Chem. Int. Ed.
Fig.8 (a) The conventional hydrogen spillover based binary-component catalysts system; (b) Hydrogen spillover one-component catalyst system with atomic-level multiple catalytic sites. The red, blue, and gray spheres represent strong H adsorption, thermoneutral H adsorption, and easy H2 desorption sites, respectively[63]. Copyright 2022, Nat. Commun.
Fig.9 Schematic diagram of hydrogen spillover in EG-Pt/ CoP[5]. Copyright 2019, Energ Environ. Sci.
Fig.10 (a) Schematic illustrations of the interfacial electronic configurations and hydrogen spillover phenomenon in catalysts.; (b) Catalyst Design. Design of PtM/CoP model catalysts with the controllable ΔΦ [65]. Copyright 2021, Nat. Commun.
Fig.11 Schematic diagram of hydrogen spillover in 5.2 wt% Rh-MoS2[43]. Copyright 2017, Adv. Funct. Mater.
Fig.12 Schematic diagram of hydrogen spillover in Ni3S2/ Cr2S3 [72]. Copyright 2022, J. Am. Chem. Soc.
Table 1 The hydrogen-evolving performance comparison of electrocatalysts with and without hydrogen spillover effect
Table 2 The frequently used characterization techniques of hydrogen spillover during the electrocatalysis
[1]
Xing L W, Liu Y, Liu Y Q, Wu K, Ji Y J. Chem. Cat. Chem., 2023, 15(4): 15.
[2]
Dinh C T, Jain A, de Arquer F P G, De Luna P, Li J, Wang N, Zheng X L, Cai J, Gregory B Z, Voznyy O, Zhang B, Liu M, Sinton D, Crumlin E J, Sargent E H. Nat. Energy, 2019, 4(2): 107.
[3]
Mosallanezhad A, Wei C, Ahmadian Koudakan P, Fang Y Y, Niu S W, Bian Z N, Liu B, Huang T, Pan H G, Wang G M. Appl. Catal. B Environ., 2022, 315: 121534.

doi: 10.1016/j.apcatb.2022.121534
[4]
Zheng Y, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2015, 54(1): 52.

doi: 10.1002/anie.v54.1
[5]
Li J Y, Liu H X, Gou W Y, Zhang M K, Xia Z M, Zhang S, Chang C R, Ma Y Y, Qu Y Q. Energy Environ. Sci., 2019, 12(7): 2298.

doi: 10.1039/C9EE00752K
[6]
Cao S F, Yang M, Elnabawy A O, Trimpalis A, Li S, Wang C Y, Göltl F, Chen Z, Liu J L, Shan J J, Li M W, Haas T, Chapman K W, Lee S, Allard L F, Mavrikakis M, Flytzani-Stephanopoulos M. Nat. Chem., 2019, 11(12): 1098.

doi: 10.1038/s41557-019-0345-3
[7]
Xie Y, Zhang L Y, Ying P J, Wang J C, Sun K, Li M. Progress in Chemistry, 2021, 33: 1571.
谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 化学进展, 2021, 33: 1571.)
[8]
Zhao D H, Lv D W, Zang Y R. Progress in Chemistry, 1997, (02): 15.
(赵德华, 吕德伟, 臧雅茹. 化学进展, 1997, (02): 15.)
[9]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998.
[10]
Shen H F, Li H, Yang Z S, Li C L. Green Energy Environ., 2022, 7(6): 1161.

doi: 10.1016/j.gee.2022.01.013
[11]
Xu H, Li J R, Chu X X. Chem. Rec., 2023, 23(3): e202200244.
[12]
Chen Y B, Zheng W Y, Chen M T, Guan X J. Transition Metal-Based Electrocatalysts: Applications in Green Hydrogen Production and Storage. Washington, DC: American Chemical Society, 2023, 1435: 147.
[13]
Khoobiar S. J. Phys. Chem., 1964, 68(2): 411.

doi: 10.1021/j100784a503
[14]
Wu X W, Li W Y, Sheng S Z, Zhu L, Yuan L F, Liu J W, Jin S Y, Zhang Z. Electrochem. Commun., 2021, 129: 107085.

doi: 10.1016/j.elecom.2021.107085
[15]
Messou D, Bernardin V, Meunier F, Ordoño M B, Urakawa A, Machado B F, Collière V, Philippe R, Serp P, Le Berre C. J. Catal., 2021, 398: 14.

doi: 10.1016/j.jcat.2021.04.004
[16]
Gao Y B, Hu E J, Yin G Y, Huang Z H. Fuel, 2021, 302: 121142.

doi: 10.1016/j.fuel.2021.121142
[17]
Prins R, Palfi V K, Reiher M. J. Phys. Chem. C, 2012, 116(27): 14274.

doi: 10.1021/jp212274y
[18]
Sihag A, Xie Z L, Thang H V, Kuo C L, Tseng F G, Dyer M S, Chen H Y T. J. Phys. Chem. C, 2019, 123(42): 25618.

doi: 10.1021/acs.jpcc.9b04419
[19]
Tan M W, Yang Y L, Yang Y, Chen J L, Zhang Z X, Fu G, Lin J D, Wan S L, Wang S, Wang Y. Nat. Commun., 2022, 13: 1457.

doi: 10.1038/s41467-022-29045-6
[20]
Zheng T T, Sang W, He Z H, Wei Q S, Chen B W, Li H L, Cao C, Huang R J, Yan X P, Pan B C, Zhou S M, Zeng J. Nano Lett., 2017, 17(12): 7968.

doi: 10.1021/acs.nanolett.7b04430
[21]
Li Y H, Liu P F, Pan L F, Wang H F, Yang Z Z, Zheng L R, Hu P, Zhao H J, Gu L, Yang H G. Nat. Commun., 2015, 6: 8064.

doi: 10.1038/ncomms9064
[22]
Ou H H, Wang D S, Li Y D. Nano Sel., 2021, 2(3): 492.
[23]
Park J, Lee S, Kim H E, Cho A, Kim S, Ye Y, Han J W, Lee H, Jang J H, Lee J. Angew. Chem. Int. Ed., 2019, 58(45): 16038.

doi: 10.1002/anie.v58.45
[24]
Dubale A A, Zheng Y Y, Wang H L, Hübner R, Li Y, Yang J, Zhang J W, Sethi N K, He L Q, Zheng Z K, Liu W. Angew. Chem. Int. Ed., 2020, 59(33): 13891.

doi: 10.1002/anie.v59.33
[25]
Zheng Y Y, Yang J, Lu X B, Wang H L, Dubale A A, Li Y, Jin Z, Lou D Y, Sethi N K, Ye Y H, Zhou J, Sun Y J, Zheng Z K, Liu W. Adv. Energy Mater., 2021, 11(5): 2002276.
[26]
Yang J, Hübner R, Zhang J W, Wan H, Zheng Y Y, Wang H L, Qi H Y, He L Q, Li Y, Dubale A A, Sun Y J, Liu Y T, Peng D L, Meng Y Z, Zheng Z K, Rossmeisl J, Liu W. Angew. Chem. Int. Ed., 2021, 60(17): 9590.

doi: 10.1002/anie.v60.17
[27]
Fu X G, Choi J Y, Zamani P, Jiang G P, Hoque M A, Hassan F M, Chen Z W. ACS Appl. Mater. Interfaces, 2016, 8(10): 6488.

doi: 10.1021/acsami.5b12746
[28]
Li Y, Jiang K Y, Yang J, Zheng Y Y, Hübner R, Ou Z W, Dong X, He L Q, Wang H L, Li J, Sun Y J, Lu X B, Zhuang X D, Zheng Z K, Liu W. Small, 2021, 17(37): e2102159.
[29]
Liu L C, Corma A. Chem. Rev., 2023, 123(8): 4855.

doi: 10.1021/acs.chemrev.2c00733
[30]
Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven J A. Nature, 2017, 541(7635): 68.

doi: 10.1038/nature20782
[31]
Zhu L L, Lin H P, Li Y Y, Liao F, Lifshitz Y, Sheng M Q, Lee S T, Shao M W. Nat. Commun., 2016, 7: 12272.

doi: 10.1038/ncomms12272
[32]
Hao R, Fan Y S, Howard M D, Vaughan J C, Zhang B. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(23): 5878.

doi: 10.1073/pnas.1800945115
[33]
Liu L, Wang Y, Zhao Y Z, Wang Y, Zhang Z L, Wu T, Qin W J, Liu S J, Jia B R, Wu H Y, Zhang D Y, Qu X H, Chhowalla M, Qin M L. Adv. Funct. Mater., 2022, 32(20): 2112207.
[34]
Xue T, Geng G N, Han Y Q, Wang H Y, Li J, Li H T, Zhou Y B, Zhu T. Nat. Commun., 2021, 12: 3205.

doi: 10.1038/s41467-021-23529-7
[35]
Chen J D, Chen C H, Qin M K, Li B, Lin B B, Mao Q, Yang H B, Liu B, Wang Y. Nat. Commun., 2022, 13: 5382.

doi: 10.1038/s41467-022-33007-3
[36]
Wu R, Zhang J F, Shi Y M, Liu D L, Zhang B. J. Am. Chem. Soc., 2015, 137(22): 6983.

doi: 10.1021/jacs.5b01330
[37]
Cho J, Kim M, Seok H, Choi G H, Yoo S S, Sagaya Selvam N C, Yoo P J, Kim T. ACS Appl. Mater. Interfaces, 2022, 14(20): 24008.

doi: 10.1021/acsami.2c03584
[38]
Yang L, Zhu X B, Xiong S J, Wu X L, Shan Y, Chu P K. ACS Appl. Mater. Interfaces, 2016, 8(22): 13966.

doi: 10.1021/acsami.6b04045
[39]
Mao C L, Wang J X, Zou Y J, Qi G D, Yang Loh J Y, Zhang T H, Xia M K, Xu J, Deng F, Ghoussoub M, Kherani N P, Wang L, Shang H, Li M Q, Li J, Liu X, Ai Z H, Ozin G A, Zhao J C, Zhang L Z. J. Am. Chem. Soc., 2020, 142(41): 17403.

doi: 10.1021/jacs.0c06118
[40]
Yan Q Q, Wu D X, Chu S Q, Chen Z Q, Lin Y, Chen M X, Zhang J, Wu X J, Liang H W. Nat. Commun., 2019, 10: 4977.

doi: 10.1038/s41467-019-12851-w
[41]
Wei Z W, Wang H J, Zhang C, Xu K, Lu X L, Lu T B. Angew. Chem. Int. Ed., 2021, 60(30): 16622.

doi: 10.1002/anie.v60.30
[42]
Liu T T, Gao W B, Wang Q Q, Dou M L, Zhang Z P, Wang F. Angew. Chem. Int. Ed., 2020, 59(46): 20423.

doi: 10.1002/anie.v59.46
[43]
Cheng Y F, Lu S K, Liao F, Liu L B, Li Y Q, Shao M W. Adv. Funct. Mater., 2017, 27(23): 1700359.

doi: 10.1002/adfm.v27.23
[44]
Hall D S, Bock C, MacDougall B R. J. Electrochem. Soc., 2013, 160(3): F235.

doi: 10.1149/2.026303jes
[45]
Huang J Z, Han J C, Wu T, Feng K, Yao T, Wang X J, Liu S W, Zhong J, Zhang Z H, Zhang Y M, Song B. ACS Energy Lett., 2019, 4(12): 3002.

doi: 10.1021/acsenergylett.9b02359
[46]
Wang J, Mao S J, Liu Z Y, Wei Z Z, Wang H Y, Chen Y Q, Wang Y. ACS Appl. Mater. Interfaces, 2017, 9(8): 7139.

doi: 10.1021/acsami.6b15377
[47]
Hu C Y, Ma Q Y, Hung S F, Chen Z N, Ou D H, Ren B, Chen H M, Fu G, Zheng N F. Chem, 2017, 3(1): 122.

doi: 10.1016/j.chempr.2017.05.011
[48]
Jin J, Wicks J, Min Q, Li J, Hu Y, Ma J, Wang Y, Jiang Z, Xu Y, Lu R, Si G, Papangelakis P, Shakouri M, Xiao Q, Ou P, Wang X, Chen Z, Zhang W, Yu K, Song J, Jiang X, Qiu P, Lou Y, Wu D, Mao Y, Ozden A, Wang C, Xia B Y, Hu X, Dravid V P, Yiu Y M, Sham T K, Wang Z, Sinton D, Mai L, Sargent E H, Pang Y. Nature, 2023, 617: 724.

doi: 10.1038/s41586-023-05918-8
[49]
Zeng Z H, Chang K C, Kubal J, Markovic N M, Greeley J. Nat. Energy, 2017, 2(6): 17070.

doi: 10.1038/nenergy.2017.70
[50]
Xiao M L, Gao L Q, Wang Y, Wang X, Zhu J B, Jin Z, Liu C P, Chen H Q, Li G R, Ge J J, He Q G, Wu Z J, Chen Z W, Xing W. J. Am. Chem. Soc., 2019, 141(50): 19800.

doi: 10.1021/jacs.9b09234
[51]
Cao L L, Luo Q Q, Liu W, Lin Y, Liu X K, Cao Y J, Zhang W, Wu Y E, Yang J L, Yao T, Wei S Q. Nat. Catal., 2018, 2(2): 134.

doi: 10.1038/s41929-018-0203-5
[52]
Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Nat. Commun., 2019, 10: 4849.

doi: 10.1038/s41467-019-12886-z
[53]
Liu Y, Liu X H, Wang X S, Ning H, Yang T, Yu J M, Kumar A, Luo Y G, Wang H D, Wang L L, Lee J S, Jadhav A R, Hu H, Wu M B, Kim M G, Lee H. ACS Nano, 2021, 15(9): 15017.

doi: 10.1021/acsnano.1c05324
[54]
Lima F H B, Zhang J, Shao M H, Sasaki K, Vukmirovic M B, Ticianelli E A, Adzic R R. J. Phys. Chem. C, 2007, 111(1): 404.

doi: 10.1021/jp065181r
[55]
Yan H, Jiang Z, Deng B, Wang Y, Jiang Z J. Adv. Energy Mater., 2023, 2300152.
[56]
Wang Q, Cheng Y, Tao H B, Liu Y, Ma X, Li D S, Yang H B, Liu B. Angew. Chem. Int. Ed., 2023, 62: e202216645.
[57]
Liu K, Huang X, Wang H, Li F, Tang Y, Li J, Shao M. ACS Appl. Mater. Interfaces, 2016, 8: 34422.

doi: 10.1021/acsami.6b12294
[58]
Lee J M, Mok E K, Lee S, Lee N S, Debbichi L, Kim H, Hwang S J. Angew. Chem. Int. Ed., 2016, 55(30): 8546.

doi: 10.1002/anie.v55.30
[59]
Yang J, Xiong S, Song J, Wu H, Zeng Y, Lu L, Shen K, Hao T, Ma Z, Liu F, Duan C, Fahlman M, Bao Q. Adv. Energy Mater., 2020, 10: 2000687.
[60]
Liang R X, Shu C Z, Hu A J, Xu C X, Zheng R X, Li M L, Guo Y W, He M, Yan Y, Long J P. J. Mater. Chem. A, 2020, 8(22): 11337.

doi: 10.1039/D0TA02970J
[61]
Lei Z W, Wang T Y, Zhao B T, Cai W B, Liu Y, Jiao S H, Li Q, Cao R G, Liu M L. Adv. Energy Mater., 2020, 10(23): 2000478.
[62]
Dai J, Zhu Y L, Tahini H A, Lin Q, Chen Y, Guan D Q, Zhou C, Hu Z W, Lin H J, Chan T S, Chen C T, Smith S C, Wang H T, Zhou W, Shao Z P. Nat. Commun., 2020, 11: 5657.

doi: 10.1038/s41467-020-19433-1
[63]
Dai J, Zhu Y L, Chen Y, Wen X, Long M C, Wu X H, Hu Z W, Guan D Q, Wang X X, Zhou C, Lin Q, Sun Y F, Weng S C, Wang H T, Zhou W, Shao Z P. Nat. Commun., 2022, 13: 1189.

doi: 10.1038/s41467-022-28843-2
[64]
Yu W L, Gao Y X, Chen Z, Zhao Y, Wu Z X, Wang L. Chin. J. Catal., 2021, 42(11): 1876.

doi: 10.1016/S1872-2067(21)63855-X
[65]
Li J Y, Hu J, Zhang M K, Gou W Y, Zhang S, Chen Z, Qu Y Q, Ma Y Y. Nat. Commun., 2021, 12: 3502.

doi: 10.1038/s41467-021-23750-4
[66]
Li J Y, Tan Y, Zhang M K, Gou W Y, Zhang S, Ma Y Y, Hu J, Qu Y Q. ACS Energy Lett., 2022, 7(4): 1330.

doi: 10.1021/acsenergylett.1c02769
[67]
Gao W, Yan M, Cheung H Y, Xia Z M, Zhou X M, Qin Y B, Wong C Y, Ho J C, Chang C R, Qu Y Q. Nano Energy, 2017, 38: 290.

doi: 10.1016/j.nanoen.2017.06.002
[68]
Niu S W, Cai J Y, Wang G M. Nano Res., 2021, 14(6): 1985.

doi: 10.1007/s12274-020-3249-z
[69]
Lasia A. Electrochemical Impedance Spectroscopy and its Applications. In Modern Aspects of Electrochemistry. Eds.: Conway B. E., Bockris J. O. M., White R. E. Springer US: Boston, MA, 2002, 143.
[70]
Liu Y, Chen Y, Tian Y, Sakthivel T, Liu H, Guo S, Zeng H, Dai Z. Adv. Mater., 2022, 2203615.
[71]
Nishihara H, Ittisanronnachai S, Itoi H, Li L X, Suzuki K, Nagashima U, Ogawa H, Kyotani T, Ito M. J. Phys. Chem. C, 2014, 118(18): 9551.

doi: 10.1021/jp5016802
[72]
Fu H Q, Zhou M, Liu P F, Liu P R, Yin H J, Sun K Z, Yang H G, Al-Mamun M, Hu P J, Wang H F, Zhao H J. J. Am. Chem. Soc., 2022, 144(13): 6028.

doi: 10.1021/jacs.2c01094
[1] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[2] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[3] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[4] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.