中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (9): 1275-1293 DOI: 10.7536/PC230530   Next Articles

• Review •

Research Progress on Self-Healing Polyurethane and Its Applications in the Field of Flexible Sensors

Chao Chen1,2, Guyue Wang1,3, Ying Tian1,2, Zhengyang Kong4, Fenglong Li1,2, Jin Zhu1(), Wu Bin Ying1,5()   

  1. 1 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences,Ningbo 315201, China
    2 University of Chinese Academy of Sciences,Bejing 100049, China
    3 University of Science and Technology Beijing,Beijing 100083, China
    4 Hanyang University, Seoul 04763, Korea
    5 Korea Advanced Institute of Science and Technology, Daejeon 34101, Korea
  • Received: Revised: Online: Published:
  • Contact: *e-mail: yingwubin@kaist.ac.kr(Wu Bin Ying); jzhu@nimte.ac.cn(Jin Zhu)
  • Supported by:
    The National Natural Science Foundation of China(52003278); The National Natural Science Foundation of China(52211540393)
Richhtml ( 141 ) PDF ( 1768 ) Cited
Export

EndNote

Ris

BibTeX

Polyurethane, a prevalent polymer, has garnered considerable attention owing to its exceptional overall performance within various applications. However, even minor damages can significantly curtail the service life of polyurethane. Consequently, a promising approach to address this challenge involves conferring self-healing properties upon polyurethane. Among the various healing mechanisms found in self-healing polyurethane, the intrinsic driving force stands out as the most common. This mechanism entails the spontaneous re-entanglement of polyurethane molecular chains through meticulous molecular structure design, obviating the necessity for external healing agents. Intrinsic driving force encompasses reversible covalent bonds (e.g., disulfide bonds, Diels-Alder reactions, and boronic ester bonds) as well as dynamic non-covalent interactions (e.g., hydrogen bonds, ionic bonds, metal coordination bonds, and host-guest interactions). The polyurethane main chain can possess a single intrinsic driving force or multiple intrinsic driving forces concurrently. Nevertheless, while self-healing polyurethane alone presents advantages in terms of extending service life and reducing maintenance costs through damage repair, it still falls short of meeting the usage requirements in certain specialized applications. To further enable the versatile application of self-healing polyurethane while preserving its self-healing properties, the incorporation of new functional groups becomes an enticing prospect. These functional groups can bestow specific properties upon polyurethane, such as shape memory, degradability, antibacterial properties and biocompatibility, thereby achieving functional integration within self-healing polyurethane. Importantly, these functionalized self-healing polyurethanes possess the potential to supplant traditional materials as dielectric materials, substrate materials, or encapsulation materials in the realm of flexible sensors. Consequently, they contribute to enhancing the reliability and durability of flexible sensors. Therefore, this article primarily focuses on elucidating the self-healing mechanism of self-healing polyurethane. Subsequently, it delves into the integration of functionality within self-healing polyurethane and its application within the field of flexible sensors. Lastly, based on these insights, the paper provides a glimpse into the future prospects for the development of self-healing polyurethane.

Contents

1 Introduction

2 Self-healing mechanism of polyurethane (PU)

2.1 Reversible covalent bonds

2.2 Dynamic noncovalent interactions

2.3 Combination of covalent bonds and noncovalent interactions

3 Functionalization of self-healing polyurethane

3.1 Shape memory

3.2 Degradability

3.3 Antibacterial performance

3.4 Biocompatibility

4 Application of self-healing PU in flexible sensors

4.1 Self-healing PU based dielectric layer

4.2 Self-healing PU based flexible electrode

4.3 Self-healing PU based encapsulated layer

5 Conclusion and outlook

Fig.1 Self-healing mechanism and functionalization of the self-healing polyurethane and the flexible sensor based on self-healing polyurethane
Fig.2 (a) Diels-Alder interaction; (b) Self-healing mechanism of Diels-Alder interaction; Self-healing pictures of polyurethane with Diels-Alder reaction(c) and polyurethane without Diels-Alder reaction (d) at a certain temperature[20]. Copyright 2019, American Chemical Society
Fig.3 (a) Chemical structure of BS-PU; (b) Schematic of an elongated PU film, and the crack could be self-healed driven by dynamic disulfide bonds (right); (c) Optical microscope images of the notched and self-healed BS-PU-3 film; (d) Weight lifting test demonstrating the self-healing capability of BS-PU with a load of 560 g[29]. Copyright 2020, American Chemical Society
Fig.4 (a) Dynamic bonds contained in self-healing polyurethanes (CBPU): thiourethane exchange (b) Optical self-healing microscope images of polyurethanes containing thiourethane bonds[35]; (c) Diselenide metathesis under visible light irradiation[36]; (d) Healing behavior under pressure; the crack disappeared after 24 h light irradiation[36]. Copyright 2018, American Chemical Society
Fig.5 Structure of polyurethanes with multiple hydrogen bonds featuring (a) non-planar rings and (b) benzene rings;(c) Microscope images of self-healing polyurethane scratch disappearance at a certain temperature[46]. Copyright 2021, Willey
Fig.6 (a) Self-healing mechanism of ionic bonds; (b) Optical microscopic images and 3D surface mapping microscopic images of the notched i-PU film with ionic bond; (c) Scratch depth diagram[49]. Copyright 2022, Willey
Fig.7 (a) Self-healing mechanism of metal ligand bonds; (b) Digital photos and optical microscope photos of the cutting-healing-stretching procedure of self-healing polyurethanes containing metal ligand bonds[62]; (c) Schematic illustration of the breakup and restore of Donor-Acceptor self-assembly and (d) micrographs of self-healing polyurethane containing Donor-Acceptor at certain temperatures[67]. Copyright 2021, Willey
Fig.8 (a) Self-healing mechanism and shape memory mechanism of polyurethane; (b) Shape memory performance and (c) self-healing properties of polyurethane[76]. Copyright 2018, Willey
Fig.9 (a) Schematic structure of a self-healing polyurethane with degradable properties; (b) Weight loss of degradable hydrogels and non-degradable cryogels[93]. Copyright 2020, Willey
Fig.10 (a) Dynamic bonds contained in self-healing polyurethanes (CBPU): thiourethane exchange; (b) Optical self-healing microscope images of polyurethanes containing thiourethane bonds; (c) Antibacterial testing of self-healing polyurethane[35]. Copyright 2021, Elsevier
Fig.11 (a) Scheme of a self-healing polyurethane with biocompatibility; (b) Demonstration of self-healing with biocompatible self-healing polyurethane; (c) Fluorescent staining of cells grown on biocompatible self-healing polyurethane[113]. Copyright 2022, American Chemical Society
Fig.12 (a) Structure of self-healing polyurethane (BS-PU); (b) Process of preparing a sensor based on BS-PU and (c) its sensing performance[29]. Copyright 2020, American Chemical Society
Fig.13 (a) Design of a flexible electrode based of self-healing polyurethane; (b) Flexible electrode under vary strain levels; (c) Analysis of the electrical signal generated by the flexible electrode[129]. Copyright 2019, Willey
Fig.14 (a) Illustration of sensor fabrication using self-healing polyurethane as an encapsulation layer; (b) Sensing performance of the encapsulated sensor; (c) Illustration of self-healing properties of the polyurethane encapsulation layer[138]. Copyright 2020, American Chemical Society
[1]
Zhang L S, Huang M M, Yu R L, Huang J C, Dong X, Zhang R Y, Zhu J. J. Mater. Chem. A, 2014, 2(29): 11490.

doi: 10.1039/c4ta01640h
[2]
Zhang L S, Shams S S, Wei Y P, Liu X Q, Ma S Q, Zhang R Y, Zhu J. J. Mater. Chem. A, 2014, 2(47): 20010.

doi: 10.1039/C4TA05126B
[3]
Dong F, Maganty S, Meschter S J, Cho J. Prog. Org. Coat., 2018, 114: 58.
[4]
Zka B, Qiang T C, Rz A, Jy B, Lei S A, Wu B, Han H A, Cy A, Kai W A, Jin Z A. Polymer., 2019, 185: 121943.

doi: 10.1016/j.polymer.2019.121943
[5]
Wang S H, Oh J Y, Xu J, Tran H, Bao Z N. Acc. Chem. Res., 2018, 51(5): 1033.

doi: 10.1021/acs.accounts.8b00015
[6]
Wang X, Liu Y, Cheng H, Ouyang X. Adv. Funct. Mater., 2022, 32(27): 2200260.

doi: 10.1002/adfm.v32.27
[7]
Sui G P, Liu D Y, Liu Y H, Ji W J, Zhang Q, Fu Q. Polymer, 2019, 182: 121838.

doi: 10.1016/j.polymer.2019.121838
[8]
Li Z L, Zhu M M, Shen J L, Qiu Q, Yu J Y, Ding B. Adv. Funct. Mater., 2020, 30(6): 1908411.

doi: 10.1002/adfm.v30.6
[9]
Kumar S, Gupta T K, Varadarajan K M. Compos. B Eng., 2019, 177: 107285.

doi: 10.1016/j.compositesb.2019.107285
[10]
Cai W, Hu Y X, Pan Y, Zhou X, Chu F K, Han L F, Mu X W, Zhuang Z Y, Wang X, Xing W Y. J. Colloid Interface Sci., 2020, 561: 32.

doi: 10.1016/j.jcis.2019.11.114
[11]
Patrick J F, Robb M J, Sottos N R, Moore J S. Nature, 2016, 540: 363.

doi: 10.1038/nature21002
[12]
Zhu D Y, Rong M Z, Zhang M Q. Prog. Polym. Sci., 2015, 49: 175.
[13]
Urban M W. Prog. Polym. Sci., 2009, 34(8): 679.

doi: 10.1016/j.progpolymsci.2009.03.004
[14]
Toohey K S, Sottos N R, White S R. Exp. Mech., 2009, 49(5): 707.

doi: 10.1007/s11340-008-9176-7
[15]
Nji J, Li G. Polymer, 2010, 51(25): 6021.

doi: 10.1016/j.polymer.2010.10.021
[16]
Toohey K S, Sottos N R, Lewis J A, Moore J S, White S R. Nat. Mater., 2007, 6(8): 581.

doi: 10.1038/nmat1934
[17]
Jones N, Guoqiang L. Smart Mater. Struct., 2012, 21: 025011.

doi: 10.1088/0964-1726/21/2/025011
[18]
Deeken J S, Farona M F. Polym. Bull., 1992, 29(3/4): 295.

doi: 10.1007/BF00944822
[19]
Rivero G, Nguyen L T T, Hillewaere X K D, Du Prez F E. Macromolecules, 2014, 47(6): 2010.

doi: 10.1021/ma402471c
[20]
Truong T T, Thai S H, Nguyen H T, Phung D T T, Nguyen L T, Pham H Q, Nguyen L T T. Chem. Mater., 2019, 31(7): 2347.

doi: 10.1021/acs.chemmater.8b04624
[21]
Tiwari N, Ho F, Ankit A, Mathews N. J. Mater. Chem. A, 2018, 6(43): 21428.

doi: 10.1039/C8TA08328B
[22]
Feng L B, Yu Z Y, Bian Y H, Lu J S, Shi X T, Chai C S. Polymer, 2017, 124: 48.

doi: 10.1016/j.polymer.2017.07.049
[23]
Postiglione G, Turri S, Levi M. Prog. Org. Coat., 2015, 78: 526.
[24]
Wang T, Yu W C, Zhou C G, Sun W J, Zhang Y P, Jia L C, Gao J F, Dai K, Yan D X, Li Z M. Compos. B Eng., 2020, 193: 108015.

doi: 10.1016/j.compositesb.2020.108015
[25]
Fildes F J T, Tobolsky A V. J. Polym. Sci. A-1 Polym. Chem., 1972, 10(1): 151.
[26]
Canadell J, Goossens H, Klumperman B. Macromolecules, 2011, 44(8): 2536.

doi: 10.1021/ma2001492
[27]
Kim S M, Jeon H, Shin S H, Park S A, Jegal J, Hwang S Y, Oh D X, Park J. Adv. Mater., 2018, 30(1): 1705145.

doi: 10.1002/adma.v30.1
[28]
Lai Y, Kuang X, Zhu P, Huang M M, Dong X, Wang D J. Adv. Mater., 2018, 30(38): 1802556.

doi: 10.1002/adma.v30.38
[29]
Ying W B, Yu Z, Kim D H, Lee K J, Hu H, Liu Y W, Kong Z Y, Wang K, Shang J, Zhang R Y, Zhu J, Li R W. ACS Appl. Mater. Interfaces, 2020, 12(9): 11072.

doi: 10.1021/acsami.0c00443
[30]
Li F L, Xu Z F, Hu H, Kong Z Y, Chen C, Tian Y, Zhang W W, Ying W B, Zhang R Y, Zhu J. Chem. Eng. J., 2021, 410: 128363.

doi: 10.1016/j.cej.2020.128363
[31]
Liu Q, Liu Y B, Zheng H, Li C M, Zhang Y, Zhang Q Y. J. Polym. Sci., 2020, 58(8): 1092.

doi: 10.1002/pola.v58.8
[32]
Gao W T, Bie M Y, Quan Y W, Zhu J Y, Zhang W Q. Polymer, 2018, 151: 27.

doi: 10.1016/j.polymer.2018.07.047
[33]
Dong F H, Yang X X, Guo L Z, Wang Y Q, Shaghaleh H, Huang Z, Xu X, Wang S F, Liu H. J. Mater. Chem. A, 2022, 10(18): 10139.

doi: 10.1039/D2TA00802E
[34]
Xu J H, Wang H, Du X S, Cheng X, Du Z L, Wang H B. Chem. Eng. J., 2021, 426: 130724.

doi: 10.1016/j.cej.2021.130724
[35]
Ying W B, Liu H X, Gao P Y, Kong Z Y, Hu H, Wang K, Shen A, Jin Z J, Zheng L, Guo H X, Zhang R Y, Zhu J. Chem. Eng. J., 2021, 420: 127691.

doi: 10.1016/j.cej.2020.127691
[36]
Xia J H, Li T Y, Lu C J, Xu H P. Macromolecules, 2018, 51(19): 7435.

doi: 10.1021/acs.macromol.8b01597
[37]
Utrera-Barrios S, Verdejo R, LÓpez-Manchado M A, Hernández Santana M. Mater. Horiz., 2020, 7(11): 2882.

doi: 10.1039/D0MH00535E
[38]
Zeng Y, Chen Y Z, Sha D, Wu Y C, Qiu R H, Liu W D. ACS Sustain. Chem. Eng., 2022, 10(35): 11524.

doi: 10.1021/acssuschemeng.2c02877
[39]
Tan M W M, Thangavel G, Lee P S. Adv. Funct. Mater., 2021, 31(34): 2103097.

doi: 10.1002/adfm.v31.34
[40]
Zhu X B, Zheng W R, Zhao H C, Wang L P. J. Mater. Chem. A, 2021, 9(36): 20737.

doi: 10.1039/D1TA05483J
[41]
Wang J P, Fu C H, Wu Z H, Lan H, Cui S W, Qi T. J. Mater. Chem. A, 2022, 10(39): 21093.

doi: 10.1039/D2TA04932E
[42]
Song Y, Liu Y, Qi T, Li G L. Angew. Chem. Int. Ed., 2018, 57(42): 13838.

doi: 10.1002/anie.201807622 pmid: 30144244
[43]
Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Adv. Mater., 2021, 33(28): e2000619.
[44]
Tu H, Zhu M, Duan B, Zhang L. Adv. Mater., 2021, 33(28): e2000682.
[45]
Chan N J A, Gu D Y, Tan S, Fu Q, Pattison T G, O’Connor A J, Qiao G G. Nat. Commun., 2020, 11: 1630.

doi: 10.1038/s41467-020-15312-x
[46]
Li Z Q, Zhu Y L, Niu W W, Yang X, Jiang Z Y, Lu Z Y, Liu X K, Sun J Q. Adv. Mater., 2021, 33(27): 2101498.

doi: 10.1002/adma.v33.27
[47]
Zhang E D, Liu X H, Liu Y C, Shi J, Li X B, Xiong X Y, Xu C G, Wu K, Lu M G. J. Mater. Chem. A, 2021, 9(40): 23055.

doi: 10.1039/D1TA05148B
[48]
Yao Y, Liu B, Xu Z Y, Yang J H, Liu W G. Mater. Horiz., 2021, 8(10): 2742.

doi: 10.1039/D1MH01217G
[49]
Chen C, Ying W B, Li J Y, Kong Z Y, Li F L, Hu H, Tian Y, Kim D H, Zhang R Y, Zhu J. Adv. Funct. Mater., 2022, 32(4): 2106341.

doi: 10.1002/adfm.v32.4
[50]
Mostafavi A, Daemi H, Rajabi S, Baharvand H. Carbohydr. Polym., 2021, 257: 117632.

doi: 10.1016/j.carbpol.2021.117632
[51]
Cheng Y, Zhu W D, Lu X F, Wang C. Nano Energy, 2022, 102: 107636.

doi: 10.1016/j.nanoen.2022.107636
[52]
Boahen E K, Pan B H, Kweon H, Kim J S, Choi H, Kong Z Y, Kim D J, Zhu J, Ying W B, Lee K J, Kim D H. Nat. Commun., 2022, 13: 7699.

doi: 10.1038/s41467-022-35434-8 pmid: 36509757
[53]
Yu Z C, Wu P Y. Mater. Horiz., 2021, 8(7): 2057.

doi: 10.1039/D1MH00461A
[54]
Kim H J, Chen B H, Suo Z G, Hayward R C. Science, 2020, 367(6479): 773.

doi: 10.1126/science.aay8467
[55]
Duan N, Sun Z, Ren Y Y, Liu Z Y, Liu L L, Yan F. Polym. Chem., 2020, 11(4): 867.

doi: 10.1039/C9PY01620A
[56]
Chen S J, Mo F N, Yang Y, Stadler F J, Chen S G, Yang H P, Ge Z C. J. Mater. Chem. A, 2015, 3(6): 2924.

doi: 10.1039/C4TA06304J
[57]
Pan G F, Wang Z, Gong X B, Wang Y F, Ge X, Xing R G. Chem. Eng. J., 2022, 446: 137228.

doi: 10.1016/j.cej.2022.137228
[58]
Lai J C, Jia X Y, Wang D P, Deng Y B, Zheng P, Li C H, Zuo J L, Bao Z N. Nat. Commun., 2019, 10: 1164.

doi: 10.1038/s41467-019-09130-z
[59]
Li C H, Zuo J L. Adv. Mater., 2020, 32(27): e1903762.
[60]
Wang Z H, Xie C, Yu C J, Fei G X, Wang Z H, Xia H S. Macromol. Rapid Commun., 2018, 39(6): 1700678.

doi: 10.1002/marc.v39.6
[61]
Xu H L, Zhao S W, Yuan A Q, Zhao Y L, Wu X D, Wei Z K, Lei J X, Jiang L. Small, 2023, 19(26): 2300626.

doi: 10.1002/smll.v19.26
[62]
Teng J W, Qu L, Liu Z Q, Qin Z H, Xu J, Wang Z N, Hou Z S. ACS Appl. Polym. Mater., 2022, 4(10): 7801.

doi: 10.1021/acsapm.2c01343
[63]
Ikkanda B A, Iverson B L. Chem. Commun., 2016, 52(50): 7752.

doi: 10.1039/C6CC01861K
[64]
Li Z Y, Davidson-Rozenfeld G, Vázquez-González M, Fadeev M, Zhang J J, Tian H, Willner I. J. Am. Chem. Soc., 2018, 140(50): 17691.

doi: 10.1021/jacs.8b10481
[65]
Wang C, Fadeev M, Vázquez-González M, Willner I. Adv. Funct. Mater., 2018, 28(35): 1803111.

doi: 10.1002/adfm.v28.35
[66]
Pramanik B, Ahmed S, Singha N, Das B K, Dowari P, Das D. Langmuir, 2019, 35(2): 478.

doi: 10.1021/acs.langmuir.8b03820 pmid: 30561205
[67]
Ying wu bin, Wang G Y, Kong Z Y, Yao C K, Wang Y B, Hu H, Li F L, Chen C, Tian Y, Zhang J W, Zhang R Y, Zhu J. Adv. Funct. Mater., 2021, 31(10): 2009869.

doi: 10.1002/adfm.v31.10
[68]
Cao Y, Tan yu jun, Li S, Lee W W, Guo H C, Cai Y Q, Wang C, Tee B C K. Nat. Electron., 2019, 2(2): 75.

doi: 10.1038/s41928-019-0206-5
[69]
Xu J, Wang X, Zhang X, Zhang Y, Yang Z, Li S, Tao L, Wang Q, Wang T. Chem. Eng. J., 2023, 451: 138673.

doi: 10.1016/j.cej.2022.138673
[70]
Liu X J, Liu X, Li W J, Ru Y, Li Y H, Sun A L, Wei L H. Chem. Eng. J., 2021, 410: 128300.

doi: 10.1016/j.cej.2020.128300
[71]
Yang X X, Wang S B, Liu X X, Huang Z, Huang X J, Xu X, Liu H, Wang D, Shang S B. Green Chem., 2021, 23(17): 6349.

doi: 10.1039/D1GC01936H
[72]
Zhang L Z, Liu Z H, Wu X L, Guan Q B, Chen S, Sun L J, Guo Y F, Wang S L, Song J C, Jeffries E M, He C L, Qing F L, Bao X G, You Z W. Adv. Mater., 2019, 31(23): 1901402.

doi: 10.1002/adma.v31.23
[73]
Wang L, Yang K, Li X Z, Zhang X H, Zhang D W, Wang L N, Lee C S. Acta Biomater., 2021, 124: 139.

doi: 10.1016/j.actbio.2021.01.038 pmid: 33524557
[74]
Fan W H, Jin Y, Shi L J, Du W N, Zhou R, Lai S Q, Shen Y C, Li Y P. ACS Appl. Mater. Interfaces, 2020, 12(5): 6383.

doi: 10.1021/acsami.9b18985
[75]
Shi Z, Kang J, Zhang L. ACS Appl. Mater. Interfaces, 2020, 12(20): 23484.

doi: 10.1021/acsami.0c04414
[76]
Ur Rehman H, Chen Y J, Hedenqvist M S, Li H, Xue W C, Guo Y L, Guo Y P, Duan H N, Liu H Z. Adv. Funct. Mater., 2018, 28(7): 1704109.

doi: 10.1002/adfm.v28.7
[77]
Yang H, Leow W R, Wang T, Wang J, Yu J C, He K, Qi D P, Wan C J, Chen X D. Adv. Mater., 2017, 29(33): 1701627.

doi: 10.1002/adma.v29.33
[78]
Zhang Y, Yin X Y, Zheng M Y, Moorlag C, Yang J, Wang Z L. J. Mater. Chem. A, 2019, 7(12): 6972.

doi: 10.1039/c8ta12428k
[79]
Wang W, Shen D F, Li X, Yao Y, Lin J P, Wang A, Yu J, Wang Z L, Hong S W, Lin Z Q, Lin S L. Angew. Chem. Int. Ed., 2018, 57(8): 2139.

doi: 10.1002/anie.201712100 pmid: 29323464
[80]
Zheng K W, Tian Y Z, Fan M J, Zhang J Y, Cheng J. J. Appl. Polym. Sci., 2018, 135(13): 46049.

doi: 10.1002/app.v135.13
[81]
Zhang W W, Leng X F, Gao M Y, Wei Z Y, Wang Y Y, Li Y. Polym. Test., 2021, 96: 107099.

doi: 10.1016/j.polymertesting.2021.107099
[82]
Menon A V, Madras G, Bose S. Polym. Chem., 2019, 10(32): 4370.

doi: 10.1039/C9PY00854C
[83]
Wu S D, Hsu S H. Biofabrication, 2021, 13(4): 045029.

doi: 10.1088/1758-5090/ac2789
[84]
Wang J, Lin X, Wang R, Lu Y, Zhang L. Adv. Funct. Mater., 2022, 33(15): 2211579.

doi: 10.1002/adfm.v33.15
[85]
Worch J C, Dove A P. ACS Macro. Lett., 2020, 9(11): 1494.

doi: 10.1021/acsmacrolett.0c00582
[86]
Fortman D J, Brutman J P, de Hoe G X, Snyder R L, Dichtel W R, Hillmyer M A. ACS Sustain. Chem. Eng., 2018, 6(9): 11145.

doi: 10.1021/acssuschemeng.8b02355
[87]
Shuai L, Jun Z, Jianjun C, Ming Y, Xuepeng L, Zhiguo J. Polym. Eng. Sci., 2019, 59(s2): E310.
[88]
Xie F W, Zhang T L, Bryant P, Kurusingal V, Colwell J M, Laycock B. Prog. Polym. Sci., 2019, 90: 211.

doi: 10.1016/j.progpolymsci.2018.12.003
[89]
Han J, Chen B, Ye L, Zhang A Y, Zhang J, Feng Z G. Front. Mater. Sci. China, 2009, 3(1): 25.

doi: 10.1007/s11706-009-0013-4
[90]
Acik G, Karabulut H R F, Altinkok C, Karatavuk A O. Polym. Degrad. Stab., 2019, 165: 43.

doi: 10.1016/j.polymdegradstab.2019.04.015
[91]
Shaabani A, Sedghi R, Motasadizadeh H, Dinarvand R. Chem. Eng. J., 2021, 411: 128449.

doi: 10.1016/j.cej.2021.128449
[92]
Daemi H, Rajabi-Zeleti S, Sardon H, Barikani M, Khademhosseini A, Baharvand H. Biomaterials, 2016, 84: 54.

doi: 10.1016/j.biomaterials.2016.01.025
[93]
Lin T W, Hsu S H. Adv. Sci., 2020, 7(3): 1901388.

doi: 10.1002/advs.v7.3
[94]
Dallinger A, Keller K, Fitzek H, Greco F. ACS Appl. Mater. Interfaces, 2020, 12(17): 19855.

doi: 10.1021/acsami.0c03148
[95]
Zhang H, Chen G P, Yu Y R, Guo J H, Tan Q, Zhao Y J. Adv. Sci., 2020, 7(16): 2000789.

doi: 10.1002/advs.v7.16
[96]
Shi C Y, Zhang Q, Yu C Y, Rao S J, Yang S, Tian H, Qu D H. Adv. Mater., 2020, 32(23): 2000345.

doi: 10.1002/adma.v32.23
[97]
Duan J, Jiang G. Polymers (Basel), 2022, 14(1): 213.
[98]
Xia Q F, Yang L, Hu K, Li K J, Xiang J, Liu G Y, Wang Y B. ACS Appl. Mater. Interfaces, 2019, 11(2): 2352.

doi: 10.1021/acsami.8b17061
[99]
Xie X L, Sun T C, Xue J Z, Miao Z H, Yan X, Fang W W, Li Q, Tang R P, Lu Y, Tang L X, Zha Z B, He T. Adv. Funct. Mater., 2020, 30(17): 2070106.

doi: 10.1002/adfm.v30.17
[100]
Huang Z X, Nazifi S, Cheng K, Karim A, Ghasemi H. Chem. Eng. J., 2021, 422: 130085.

doi: 10.1016/j.cej.2021.130085
[101]
Ding Y Y, Sun Z, Shi R W, Cui H Q, Liu Y Y, Mao H L, Wang B, Zhu D M, Yan F. ACS Appl. Mater. Interfaces, 2019, 11(3): 2860.

doi: 10.1021/acsami.8b19746
[102]
Zeng W H, Jin Y, Li Y P, Zhou R, Shi L J, Bai L, Shang X, Li J. Prog. Org. Coat., 2023, 178: 107461.
[103]
Feng H M, Wang W, Wang T, Zhang L, Li W, Hou J, Chen S G. J. Mater. Sci. Technol., 2023, 133: 89.

doi: 10.1016/j.jmst.2022.06.019
[104]
Li Q, Cao L, Wang W, Qin X, Chen S. Composites Part A, 2022, 163: 107213.

doi: 10.1016/j.compositesa.2022.107213
[105]
Xu Z Q, Wang X H, Liu X M, Cui Z D, Yang X J, Yeung K W K, Chung J C, Chu P K, Wu S L. ACS Appl. Mater. Interfaces, 2017, 9(45): 39657.

doi: 10.1021/acsami.7b10818
[106]
Wang H B, Yan R, Zou Y K, Xing D M, Zhong K. J. Mater. Chem. B, 2022, 10(7): 1085.

doi: 10.1039/D1TB02710G
[107]
Jiang C Y, Zhang L Z, Yang Q, Huang S X, Shi H P, Long Q, Qian B, Liu Z H, Guan Q B, Liu M J, Yang R H, Zhao Q, You Z W, Ye X F. Nat. Commun., 2021, 12: 4395.

doi: 10.1038/s41467-021-24680-x
[108]
Liu J, Qu M Y, Wang C R, Xue Y M, Huang H, Chen Q M, Sun W J, Zhou X W, Xu G H, Jiang X. Small, 2022, 18(17): e2106172.
[109]
Liang Y P, He J H, Guo B L. ACS Nano, 2021, 15(8): 12687.

doi: 10.1021/acsnano.1c04206
[110]
Huang R, Zhang X, Li W, Shang L, Wang H, Zhao Y. Adv. Sci. (Weinh), 2021, 8(17): e2100201.
[111]
Simões D, Miguel S P, Ribeiro M P, Coutinho P, Mendonça A G, Correia I J. Eur. J. Pharm. Biopharm., 2018, 127: 130.

doi: 10.1016/j.ejpb.2018.02.022
[112]
Tamura K, Maruyama T, Sakurai S. Gen. Thorac. Cardiovasc. Surg., 2019, 67(3): 277.

doi: 10.1007/s11748-018-1010-2
[113]
Shao Y, Dong K Y, Lu X Y, Gao B B, He B F. ACS Appl. Mater. Interfaces, 2022, 14(51): 56525.

doi: 10.1021/acsami.2c16277
[114]
Gu X X, Gao T T, Meng X P, Zhu Y, Wang G Y. Prog. Org. Coat., 2022, 162: 106561.
[115]
Chen S L, Li S Y, Ye Z P, Zhang Y F, Gao S D, Rong H, Zhang J H, Deng L D, Dong A J. Chem. Eng. J., 2022, 446: 136985.

doi: 10.1016/j.cej.2022.136985
[116]
Bayan R, Karak N. Composites Part A, 2018, 110: 142.

doi: 10.1016/j.compositesa.2018.04.024
[117]
Yang G W, He X T, Cheng S, Li X L, Yang S Z, Wei H B, Ding Y S. Appl. Surf. Sci., 2018, 456: 270.

doi: 10.1016/j.apsusc.2018.06.040
[118]
Fang W Y, Liu L B, Li T, Dang Z, Qiao C D, Xu J K, Wang Y Y. Chem. Eur. J., 2016, 22(3): 878.

doi: 10.1002/chem.v22.3
[119]
Liu C, Yin Q, Li X, Hao L F, Zhang W B, Bao Y, Ma J Z. Adv. Compos. Hybrid. Mater., 2021, 4(1): 138.

doi: 10.1007/s42114-021-00206-3
[120]
Yao Y, Xu Z, Liu B, Xiao M, Yang J, Liu W. Adv. Funct. Mater., 2020, 31(4): 2006944.

doi: 10.1002/adfm.v31.4
[121]
Gao H, Xu J N, Liu S, Song Z Q, Zhou M, Liu S W, Li F, Li F H, Wang X D, Wang Z X, Zhang Q X. J. Colloid Interface Sci., 2021, 597: 393.

doi: 10.1016/j.jcis.2021.04.005
[122]
Pu W L, Fu D H, Wang Z H, Gan X P, Lu X L, Yang L, Xia H S. Adv. Sci., 2018, 5(5): 1800101.

doi: 10.1002/advs.v5.5
[123]
Xu K M, Chen G Q, Zhao M J, He W Y, Hu Q M, Pu Y. RSC Adv., 2022, 12(5): 2712.

doi: 10.1039/D1RA07083E
[124]
Yang Y, Ye Z S, Liu X X, Su J H. J. Mater. Chem. C, 2020, 8(15): 5280.

doi: 10.1039/D0TC00551G
[125]
Wen X, Xu J H, Wang H B, Du Z L, Wang S, Cheng X. Polym. Eng. Sci., 2022, 62(10): 3132.

doi: 10.1002/pen.v62.10
[126]
Xun X C, Zhang Z, Zhao X, Zhao B, Gao F F, Kang Z, Liao Q L, Zhang Y. ACS Nano, 2020, 14(7): 9066.

doi: 10.1021/acsnano.0c04158
[127]
Zhang E D, Shi J, Xiao L Q, Zhang Q, Lu M P, Nan B F, Wu K, Lu M G. Polym. Chem., 2021, 12(6): 831.

doi: 10.1039/D0PY01480J
[128]
Dong F H, Yang X X, Guo L Z, Qian Y H, Sun P H, Huang Z, Xu X, Liu H. J. Colloid Interface Sci., 2023, 631: 239.

doi: 10.1016/j.jcis.2022.11.045
[129]
Park S, Thangavel G, Parida K, Li S H, Lee P S. Adv. Mater., 2019, 31(1): 1805536.

doi: 10.1002/adma.v31.1
[130]
Lou Y, Liu H Z, Zhang J Y. Chem. Eng. J., 2020, 399: 125732.

doi: 10.1016/j.cej.2020.125732
[131]
(张广伟, 张来斌, 樊建春, 孙秉才, 齐立娟, 赵坤鹏, 张仁庆. 无损检测, 2013, 35(1): 56.
( Zhang G W, Zhang L B, Fan J C, Sun B C, Qi L J, Zhao S P, Zhang R Q. Nondestructive Testing, 2013, 35(1): 56.).
[132]
Zhou G P. Piezoelectrics Acoustooptics, 2010, 32(4):534.
(周国鹏. 压电与声光, 2010, 32(4):534.).
[133]
任越, 张钰民, 钟国舜, 宋言明, 孟凡勇. 激光与红外, 2020, 50(5): 598.
(Ren Y, Zhang Y M, Zhong G S, Song Y M, Meng F Y. Laser Infrared, 2020, 50(5): 598.).
[134]
Song H L, Luo G Q, Ji Z Y, Bo R H, Xue Z G, Yan D J, Zhang F, Bai K, Liu J X, Cheng X, Pang W B, Shen Z M, Zhang Y H. Sci. Adv., 2022, 8(11): eabm3785.

doi: 10.1126/sciadv.abm3785
[135]
Gao Z Y, Lou Z, Han W, Shen G Z. ACS Appl. Mater. Interfaces, 2020, 12(21): 24339.

doi: 10.1021/acsami.0c05119
[136]
Fan C J, Wen Z B, Xu Z Y, Xiao Y, Wu D, Yang K K, Wang Y Z. Macromolecules, 2020, 53(11): 4284.

doi: 10.1021/acs.macromol.0c00239
[137]
Tian Q, Yan W R, Li Y Q, Ho D. ACS Appl. Mater. Interfaces, 2020, 12(8): 9710.

doi: 10.1021/acsami.9b18873
[138]
Zhang L, Li H Q, Lai X J, Gao T Y, Zeng X R. ACS Appl. Mater. Interfaces, 2020, 12(39): 44360.

doi: 10.1021/acsami.0c13442
[1] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.