中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (2): 187-203 DOI: 10.7536/PC230526 Previous Articles   Next Articles

• 20 •

Perovskite-Based Near-Infrared Photodetectors

Wenhuan Gao1, Jike Ding1, Quanxing Ma1, Yuqing Su1, Hongwei Song2, Cong Chen1()   

  1. 1 School of Materials Science and Engineering, State Key Lab of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
    2 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
  • Received: Revised: Online: Published:
  • Contact: *e-mail: chencong@hebut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62004058); Natural Science Foundation of Hebei Province(F20202022)
Richhtml ( 10 ) PDF ( 127 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, organo-metal halide perovskites materials with ABX3 crystal structure have shown promising application prospects in the field of photoelectric detection due to their optical and electrical properties such as adjustable bandgap engineering, high absorption coefficient and long carrier transmission distance. Especially, the hybrid perovskite prepared by pure Sn or Sn/Pb mixed cations have excellent near-infrared photoelectroresponse in the range of 760~1050 nm, showing many advantages such as high sensitivity, low dark current and high detection rate. To further broaden the near-infrared and infrared response wavelength range of perovskite, the researchers explored combining organic materials, crystalline silicon/germanium, Ⅲ-Ⅴ compounds, Ⅳ-Ⅵ compounds, upconversion fluorescent materials as complementary light absorption layers with perovskite to prepare heterostructures to construct wide-spectrum response near-infrared photodetectors. Based on the above research, this paper summarizes the current effective ways to broaden the spectrum range of perovskite photodetectors. At the same time, the future development prospect of perovskite material near infrared photodetector is prospected.

Contents

1 Introduction

2 Basic indicators of photodetectors

2.1 Device structure and working principle of photodetectors

2.2 Performance parameters of photodetectors

2.3 Strategy of broadening the spectrum response range of perovskites

3 Pb perovskite for near-infrared photodetectors

3.1 Polycrystalline perovskite materials

3.2 Single crystal perovskite materials

4 Narrow band gap Sn and Sn/Pb Mixed Perovskite- Based near-infrared photodetectors

4.1 Sn-based perovskite near-infrared photodetectors

4.2 Sn/Pb mixed perovskite near-infrared photodetectors

5 Perovskite/inorganic heterojunction near-infrared photodetectors

5.1 Silicon and other classic semiconductors

5.2 Graphene

5.3 Transition metal dichalcogenides

5.4 Ⅲ-Ⅴ compounds semiconductors

5.5 Ⅳ-Ⅳ compounds semiconductors

6 Perovskite/organic heterojunction near-infrared photodetectors

7 Perovskite/upconversion material near-infrared photodetectors

8 Application of near-infrared photodetectors

9 Conclusion and outlook

Fig.1 Atomic models of perovskite MAPbI3 nanocrystals with (a) cubic and (b) tetragonal crystal structures.[12] Copyright 2014, IOP Publishing Ltd.
Fig.2 Three different types of perovskite PDs schematic (a) photodiode; (b) photoconductive type; (c) phototransistor.
Fig.3 (a) Energy level matching diagram of ZnO nanorods/ MAPbI3 PDs[17];(b) Schematic diagram of MAPbI3-xClx for flexible devices[18];(c) Photocurrent and responsivity of MAPbI3 nanocrystalline PDs[19];(d) Photographs of MAPbI3 single crystals[21];(e) Response velocity curves of MAPbI3 single crystals [22];(f) MAPbI3 single crystal space charge limiting current test (SCLC)[23] Copyright 2017, American Chemical Society. Copyright 2017, Nature. Copyright 2020, Wiley-VCH. Copyright 2016, Wiley-VCH. Copyright 2018, Elsevier. Copyright 2022, Royal Society of Chemistry.
Table 1 Common Sn and Sn?Pb Perovskite NIR-PDs
Perovskite Wavelength range (nm) Responsivity (mA·W−1) Detection rate (Jones) EQE
(%)
LDR (dB) Response time [trise/tdecay] Ref.
MASnI3 300~1000 470 8.8×1010 1.5 s/0.4 s 30
CsSnI3 475~940 54 @940 nm 3.85×105 83.8 ms/243 ms 31
CsSnI3 400~900 257 1.5×1011 0.35 ms/1.6 ms 32
FASnI3 300~1000 33
FASnI3 300~1000 1.1×108 1.9×1012 180 s/360 s 34
FASnI3 300~1000 2×108 @850 nm 3.2×1012 117 s/206 s 35
PEA0.15FA0.85SnI3 450~850 0.39 8.29 × 1011 0.78 μs 50
MA0.975Rb0.025Sn0.65Pb0.35I3 300~1100 400 @910 nm >1012 110 40 ns/468 ns 38
MASnxPb1-xI3 300~1100 200 @940 nm >1011 >20% @780-970
nm
100 0.09 μs /2.27 μs 39
FA0.85Cs0.15Sn0.5Pb0.5I3
600~1000 530 @940 nm 6 ×1012 ≈80% @
760-900 nm
103 58.3 ns/0.86 μs 40
(FASnI3)0.6(MAPbI3)0.4 300~1000 400 @950 nm 1.1 × 1012 >65% @350-900
nm
167 6.9 μs/9.1 μs 14
Cs0.05MA0.45FA0.5Pb0.5Sn0.5I3 300~1050 530 @910 nm 2.01 × 1011 0.035 μs 41
CsPb0.5Sn0.5I3
(5% (PEA)2Pb0.5Sn0.5I4)
700~900 270 @850 nm 5.42×1014 42
MA0.5FA0.5Pb0.5Sn0.5I3 (2.5% (PEA)2Pb0.5Sn0.5I4) 700~900 ≈100 @800 nm ≈1.6 × 1012 ≈14% @800 nm 10 μs /10 μs 51
(MAPbI3)0.5(FASnI3)0.5 300~1050 410 2.91×1012 >60 @808 nm 10.9 ms/8.9 ms 43
MA0.5FA0.5Pb0.5Sn0.5I3 350~1000 >200 @
800~950 nm
>1012 ≈10% @800 nm 44
MA0.3FA0.7Pb0.5Sn0.5I3 470~910 600 1.5 × 1012 85% @850 nm 45
FA0.5MA0.45Cs0.05Pb0.5Sn0.5I3 300~1050 350 @950 nm 2.21 × 1011 75% @800 nm 185 42.9 ns 46
Cs0.15FA0.85Pb0.5Sn0.5I3 300~1050 520 @850 nm 5.34 × 1012 75% @850 nm 224 39.68 ns 47
FA0.7MA0.3Sn0.5Pb0.5I3 450~900 510 1.8 × 1012 75.4% @840 nm 94 ns/97 ns 48
FA0.85Cs0.15Sn0.5Pb0.5I3 400~900 570 8.48 × 1012 80 @910 nm 67.5 ns/0.72 μs 49
MASn0.25Pb0.75I3 500~900 510 1.1 × 1013 192.6 52
Fig.4 (a) Sample schematic of Sn perovskite NWs[30];(b) Rise/fall time of CsSnI3 perovskite PDs[31];(c)XPS curves of CsSnI3 samples after exposure to air for 6 h[32];(d) SEM images of FASnI3 thin films with and without KHQSA modification[33];(e) Detectivity curves of FASnI3/PEDOT:PSS perovskite PDs [35] Copyright 2016, American Chemical Society. Copyright 2019, American Chemical Society. Copyright 2020, Wiley-VCH. Copyright 2019, Wiley-VCH. Copyright 2020, American Chemical Society.
Fig.5 (a) Band gap of MASnxPb1-xI3 perovskite films (0 < x < 1)[37] ;(b) XRD images of perovskite films doped with or without rubidium ions[38] ;(c) SEM images of perovskite films at different crystallization times[39];(d) SEM images of (FASnI3)0.6(MAPbI3)0.4 perovskite films with different thicknesses [14];(e) Double-sided passivation of Sn/Pb perovskite PDs EQE spectral curve by PEAI[41] ;(f) Photocurrent and dark current J-V curves of PDs with or without azobenzene derivatives[46] Copyright 2018,Wiley-VCH. Copyright 2018, Wiley-VCH Copyright 2019, American Chemical Society. Copyright 2017, Wiley-VCH. Copyright 2020, Wiley-VCH. Copyright 2021,Elsevier.
Table 2 Common Pb Perovskite NIR-PDs
Perovskite Wavelength range (nm) Responsivity
(mA·W−1)
Detection rate (Jones) EQE (%) LDR (dB) Response time [trise/tdecay] (µs) Ref.
MAPbI3/Gd-doped ZnO nanorods 250~1357 220 @1357 nm 9.3×109@1357 nm 4 × 105 /5 × 105 17
MAPbI3-xClx 1012 @1100 nm 5.6 × 1013 @895 nm 18
MAPbI3 400~1064 150 @820 nm 22% @820 nm 1.2 × 105/8 × 104 21
MAPbI3 400~1000 4 × 103 @800 nm 600% @800 nm 39/1.9 22
CsPbBr3/GeSn 450~2200 4.7 @2200 nm -/26 55
Si/MAPbBr3 single crystal 405~1064 5 @1064 nm 2×1010 @1064 nm 0.52/2.44 56
MAPbI3/Si-NPA 400~1050 8.13 @780 nm 9.74 × 1012 @780 nm 253.3/230.4 57
MAPbI3-x(SCN)x/Si-NWs
350~1100
1.3 × 104
@800 nm
1.0 × 1013 @800 nm 22.2/17.6 58
Cs-doped FAPbI3/Si nanowire array 300~1200 14.86 @850 nm 2.04 × 1010 @850 nm 4/8 59
PVP-modified MAPbIxCl3-x/Si 405~988 ≈1250 @988 nm ≈5.3 × 1011 @808 nm ≈275% @808 nm 44 645/560 60
Si/MAPbI3 300~1150 50.9 @815 nm 2.23 × 1012 @815 nm <10% 1.3×104/1.46×
104
61
MAPbIxCl3-x/Si 300~1150 870 @800 nm 6 × 1012 @800 nm 5×104
/1.5×105
62
MAPbI3/Si 400~1200 18.4 @970 nm 1.8 × 1012 @970 nm 23.5% 97
graphene/CH3NH3PbI3 400~800 180 >1015 5×104% 87 ms/540 ms 63
(PEA)2(MA)2Pb3I10/GaAs NWs 400~800 75 1.49×1011 568 ms/785 ms 74
FA0.85Cs0.15PbI3/PtSe2 300~1200 117.7 @808 nm 2.91 × 1012 @808 nm 14.9% @808 nm 0.078/0.060 68
FA0.85Cs0.15PbI3/PtSe2 200~1550 313 @808 nm 2.72 × 1013 @808 nm 50% @808 nm 3.5/4 69
MAPbI3/MoS2 500~850 1.11×105 @850 nm 2.39 × 1010 @850 nm 6.17×106/4.5×
106
71
graphene /(PEA)2SnI4/MoS2/ graphene 300~900 121 8.09 × 109 38.2 34 ms/38 ms 70
MAPbI3/PbS QDs layer 375~1100 132 @900 nm 5.1 × 1012 @900 nm 18.2% @900 nm 100 80
MAPbI3/PbS-SCN QDs layer 365~1550 1.58×103 @940 nm 3.0 × 1011 @940 nm <4.2×104 81
MAPbI3:PbS QDs 400~1000 3.30 × 1011 @900 nm 6% @900 nm <5 × 105 83
MAPbI2.5Br0.5PbS QDs 400~1400 99 @975 4 ×1012 @1240 nm 40% @1240 nm 60 <10 79
MAPbI3/PbSe QDs layer
300~1500 700 @1200 nm 7×107@1200 nm 2.5×103/3×103 82
MAPbI3-xClx:PbS QDs 300~1500 350 @1300 nm 9 × 1010@1300 250/500 98
MAPbI3/PDPP3T 300~940 154 @835 nm 8.8 × 1010 @835 nm 1% @937 nm 3×104/1.5×105 88
MAPbI3/PDPPTDTPT 350~1050 1 × 1011 @900 nm 10%~20% @800~950 nm 95 6.1 × 10−3 89
MAPbI3/PTB7-Th/IEICO-4F 340~940 518 >1010 @340~940 nm >70% 500/510 92
MAPbI3/SWCNTs/NDI-DPP 375~1400 150 @1064 nm 2×1012 @920~940 nm 20% @920~940 nm 4.32/12.16 93
MAPbI3/F8IC:PTB7-Th 300~1000 370 @870 nm 2.3 × 1011 @870 nm 54% @850 nm 191 35/20 94
Fig.6 (a) SEM images of Si-NPA substrate covered with perovskite layer[57];(b) The ascending and descending curves of MAPbI3/Si-NW heterojunction device[58]; (c) diagram of Si/SnO2 /MAPbI3/MoO3 heterojunction energy bands [61] Copyright 2019,Elsevier. Copyright 2021, Wiley-VCH. Copyright 2020, The Japan Society of Applied Physics.
Fig.7 (a) Wavelength responsiveness and detection of PtSe2/ perovskite heterojunction PDs[68]; (b) The photocurrent of PdSe2/perovskite heterojunction PDs varies as a function of different polarization angles[69] Copyright 2018, American Chemical Society. Copyright 2019, Wiley-VCH.
Fig9 (a) Schematic diagram of manufacturing flexible PDs using MAPbI3/PDPP3T composite photosensitive layer[88]; (b) EQE and TPC of perovskite /PDPPTDTPT/PC61BM composite PDs[89]; (c) Perovskite /PC61BM/C60 PDs dark current density-voltage (J-V) image[90]; (d) The dual-electron transport layer IEICO-4F and PTB7-Th PDs band map are introduced[92]; (e) detectivity versus wavelength of introduced NDI-DPP/perovskite PDs[93]. Copyright 2016, Wiley-VCH. Copyright 2017, Royal Society of Chemistry. Copyright 2015, Wiley-VCH. Copyright 2018, Wiley-VCH. Copyright 2017, Wiley-VCH.
Fig.8 The structural formula of (a) PDPP3T[88]; (b) PDPPTDTPT[89]; (c) F8IC[94]; (d) PTB7-Th[92]; (e) IEICO-4F[92]; (f) NDI-DPP[93]; which are adopted to combine with perovskite to broaden the spectral response range of Pb perovskite-based PDs.
Fig10 (a) Design and demonstration of a PbS-SCN/MAPbI3 photodetector array for image-sensing application[81] ;(b) Schematic of the image scanning system and actual imaging for the OIHP photodetector[99] ;(c) Schematic diagram of the NIR up-conversion detection system with pictures of experimental detection under weak light and darkness to avoid the effects of indoor lighting[41] ;(d) Schematic diagram of the integrated NIR acousto-optic communication system with mixed perovskite photodetector[46] ;(e) Photocurrent distribution and capture images of 6 × 6 pixel Sn/Pb chalcogenide devices[39] Copyright 2019,American Chemical Society. Copyright 2020, Nature. Copyright 2020, Wiley-VCH. Copyright 2021,Elsevier. Copyright 2021, American Chemical Society.
[1]
Pawbake A S, Waykar R G, Late D J, Jadkar S R. ACS Appl. Mater. Interfaces, 2016, 8(5): 3359.

doi: 10.1021/acsami.5b11325
[2]
Mueller T, Xia F N, Avouris P. Nat. Photonics, 2010, 4(5): 297.

doi: 10.1038/nphoton.2010.40
[3]
Jie H N, Xue Y S, Ming W Z, Shen L S, Bai X J, Bo L J. Sci. Rep., 2014, 4(1): 5209.

doi: 10.1038/srep05209
[4]
Fu B B, Sun L J, Liu L, Ji D Y, Zhang X T, Yang F X, Hu W P. Sci. China Mater., 2022, 65(10): 2779.

doi: 10.1007/s40843-022-2035-y
[5]
Andrea P, Ansuman B, David K, Ian P. Lab Chip, 2008, 8(5): 794.

doi: 10.1039/b715143h
[6]
Park J, Lee C, Kim T, Kim H, Kim Y. Adv. Electron. Mater., 2021, 7(1): 2000932.

doi: 10.1002/aelm.v7.1
[7]
Young K J, Wook L J, Suk J H, Hyunjung S, Gyu P N. Chem. Rev., 2020, 120(15): 7867.

doi: 10.1021/acs.chemrev.0c00107
[8]
Hui D, Kun Y X, Dong D D, Bing L, Dun Y, Jie Y S, Ke Q K, Bing C Y, Jiang T, Sheng S H. Nano Lett., 2015, 15(12): 7963.

doi: 10.1021/acs.nanolett.5b03061
[9]
Long G Y, Chao L, Hideyuki T, Eiichi N. J. Phys. Chem. Lett., 2015, 6(3): 535.

doi: 10.1021/jz502717g
[10]
Feng L, Chun M, Hong W, Jin H W, Li Y W, D S A, Tom W. Nat. Commun., 2015, 6(1): 8238.

doi: 10.1038/ncomms9238
[11]
National Renewable Energy Laboratory, (2023). https://www.nrel.gov/pv/interactive-cell-efficiency.html.
[12]
Chen Z H, Li H, Tang Y B, Huang X, Ho D, Lee C S. Mater. Res. Express, 2014, 1(1): 015034.

doi: 10.1088/2053-1591/1/1/015034
[13]
Hu X, Zhang X D, Liang L, Bao J, Li S, Yang W L, Xie Y. Adv. Funct. Mater., 2014, 24(46): 7373.

doi: 10.1002/adfm.v24.46
[14]
Wang W B, Zhao D W, Zhang F J, Li L D, Du M D, Wang C L, Yu Y, Huang Q Q, Zhang M, Li L L. Adv. Funct. Mater., 2017, 27(42): 1703953.

doi: 10.1002/adfm.v27.42
[15]
Wu G, Fu R L, Chen J H, Yang W T, Ren J, Guo X K, Ni Z Y, Pi X D, Li C Z, Li H Y, Chen H Z. Small, 2018, 14(39): 1802349.
[16]
P A P, Peter V, Peter D H, Marianna P, Guy L, Jeroen D C, Joris V C. Opt. Express, 2015, 23(7): 9369.

doi: 10.1364/OE.23.009369
[17]
Alwadai N, Haque M A, Mitra S, Flemban T, Pak Y, Wu T, Roqan I. ACS Appl. Mater. Interfaces, 2017, 9(43): 37832.

doi: 10.1021/acsami.7b09705
[18]
Xie C, You P, Liu Z K, Li L, Yan F. Light. Sci. Appl., 2017, 6(8): e17023.

doi: 10.1038/lsa.2017.23
[19]
Perumal Veeramalai C, Yang S Y, Zhi R N, Sulaman M, Saleem M I, Cui Y Y, Tang Y, Jiang Y R, Tang L B, Zou B S. Adv. Opt. Mater., 2020, 8(15): 2000215.
[20]
Zhao Y C, Tan H R, Yuan H F, Yang Z Y, Fan J Z, Kim J H, Voznyy O, Gong X W, Quan L N, Tan C S, Hofkens J, Yu D P, Zhao Q, Sargent E H. Nat. Commun., 2018, 9: 1607.

doi: 10.1038/s41467-018-04029-7
[21]
Lin Q Q, Armin A, Burn P L, Meredith P. Laser Photonics Rev., 2016, 10(6): 1047.

doi: 10.1002/lpor.v10.6
[22]
Zhang Y X, Liu Y C, Yang Z, Liu S F. J. Energy Chem., 2018, 27(3): 722.

doi: 10.1016/j.jechem.2017.11.002
[23]
Yu J, Zheng J, Chen H Y, Tian N, Li L, Qu Y M, Huang Y T, Luo Y X, Tan W Z. J. Mater. Chem. C, 2022, 10(1): 274.

doi: 10.1039/D1TC04961E
[24]
Xi Y Y, Wang X C, Ji T, Li G H, Shi L L, Liu Y C, Wang W Y, Ma J Q, Liu S Z, Hao Y Y. Adv. Opt. Mater., 2023, 2202423.
[25]
Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G. J. Am. Chem. Soc., 2012, 134(20): 8579.

doi: 10.1021/ja301539s
[26]
Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G. Nat. Photonics, 2014, 8(6): 489.

doi: 10.1038/nphoton.2014.82
[27]
Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N. Adv. Mater., 2014, 26(41): 7122.

doi: 10.1002/adma.v26.41
[28]
Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G. J. Am. Chem. Soc., 2016, 138(44): 14750.

doi: 10.1021/jacs.6b09257
[29]
Lee S J, Shin S S, Im J, Ahn T K, Noh J H, Jeon N J, Seok S I, Seo J. ACS Energy Lett., 2018, 3(1): 46.

doi: 10.1021/acsenergylett.7b00976
[30]
Waleed A, Tavakoli M M, Gu L L, Wang Z Y, Zhang D Q, Manikandan A, Zhang Q P, Zhang R J, Chueh Y L, Fan Z Y. Nano Lett., 2017, 17(1): 523.

doi: 10.1021/acs.nanolett.6b04587
[31]
Han M M, Sun J M, Peng M, Han N, Chen Z H, Liu D, Guo Y N, Zhao S, Shan C X, Xu T, Hao X T, Hu W D, Yang Z X. J. Phys. Chem. C, 2019, 123(28): 17566.

doi: 10.1021/acs.jpcc.9b03289
[32]
Cao F R, Tian W, Wang M, Wang M, Li L. InfoMat, 2020, 2(3): 577.

doi: 10.1002/inf2.v2.3
[33]
Tai Q D, Guo X Y, Tang G Q, You P, Ng T W, Shen D, Cao J P, Liu C K, Wang N X, Zhu Y, Lee C S, Yan F. Angewandte Chemie Int. Ed., 2019, 58(3): 806.

doi: 10.1002/anie.v58.3
[34]
Liu C K, Tai Q D, Wang N X, Tang G Q, Loi H L, Yan F. Adv. Sci., 2019, 6(17): 1900751.

doi: 10.1002/advs.v6.17
[35]
Liu C K, Tai Q D, Wang N X, Tang G Q, Hu Z, Yan F. ACS Appl. Mater. Interfaces, 2020, 12(16): 18769.

doi: 10.1021/acsami.0c01202
[36]
Yuhei O, Atsushi M, Syota T, Takahiro S, Naotaka F, Qing S, Taro T, Kenji Y, S P S, Tingli M, Shuzi H. J. Phys. Chem. Lett., 2014, 5(6): 1004.

doi: 10.1021/jz5002117
[37]
Zhu H L, Choy W C H. Sol. RRL, 2018, 2(10): 1800146.
[38]
Zhu H L, Liang Z F, Huo Z B, Ng W K, Mao J, Wong K S, Yin W J, Choy W C H. Adv. Funct. Mater., 2018, 28(16): 1706068.

doi: 10.1002/adfm.v28.16
[39]
Zhu H L, Lin H, Song Z L, Wang Z S, Ye F, Zhang H, Yin W J, Yan Y F, Choy W C H. ACS Nano, 2019, 13(10): 11800.

doi: 10.1021/acsnano.9b05774
[40]
Liu H, Zhu H L, Wang Z S, Wu X, Huang Z F, Huqe M R, Zapien J A, Lu X H, Choy W C H. Adv. Funct. Mater., 2021, 31(28): 2010532.
[41]
Zhao Y, Li C L, Jiang J Z, Wang B M, Shen L. Small, 2020, 16(26): 2001534.
[42]
Cao F, Chen J D, Yu D J, Wang S, Xu X B, Liu J X, Han Z Y, Huang B, Gu Y, Leong Choy K, Zeng H B. Adv. Mater., 2020, 32(6): 1905362.

doi: 10.1002/adma.v32.6
[43]
Zhao R, Huang J Y, Liu M Y, Tan F R, Zhang P T, Chen Z, Yao X, Li S J. Nanotechnology, 2023, 34(21): 215702.

doi: 10.1088/1361-6528/acbcda
[44]
Xu X B, Chueh C C, Jing P F, Yang Z B, Shi X L, Zhao T, Lin L Y, Jen A K Y. Adv. Funct. Mater., 2017, 27(28): 1701053.

doi: 10.1002/adfm.v27.28
[45]
Morteza Najarian A, Vafaie M, Johnston A, Zhu T, Wei M Y, Saidaminov M I, Hou Y, Hoogland S, García de Arquer F P, Sargent E H. Nat. Electron., 2022, 5(8): 511.

doi: 10.1038/s41928-022-00799-7
[46]
Ma N N, Jiang J Z, Zhao Y, He L J, Ma Y, Wang H L, Zhang L L, Shan C X, Shen L, Hu W D. Nano Energy, 2021, 86: 106113.

doi: 10.1016/j.nanoen.2021.106113
[47]
He L J, Hu G J, Jiang J Z, Wei W, Xue X Z, Fan K, Huang H T, Shen L. Adv. Mater., 2023, 35(10): 2210016.
[48]
Liu F C, Liu K, Rafique S, Xu Z Y, Niu W Q, Li X G, Wang Y F, Deng L L, Wang J, Yue X F. Adv. Sci., 2023, 10(5): 2205879.

doi: 10.1002/advs.v10.5
[49]
Liu H, Zhu L, Zhang H, He X J, Yan F, Wong K S, Choy W C H. ACS Energy Lett., 2023, 8(1): 577.

doi: 10.1021/acsenergylett.2c02055
[50]
Jang W, Kim K, Kim B G, Nam J S, Jeon I, Wang D H. Adv. Funct. Mater., 2022, 32(51): 2270290.
[51]
Liu J X, Zou Y S, Huang B, Gu Y, Yang Y, Han Z Y, Zhang Y Z, Xu X B, Zeng H B. Nanoscale, 2020, 12(39): 20386.

doi: 10.1039/D0NR04974C
[52]
Chang C Y, Wu K H, Chang C Y, Guo R F, Li G L, Wang C Y. Mol. Syst. Des. Eng., 2022, 7(9): 1073.

doi: 10.1039/D2ME00032F
[53]
Sun Z H, Aigouy L, Chen Z Y. Nanoscale, 2016, 8(14): 7377.

doi: 10.1039/C5NR08677A
[54]
I S M, Azimul H M, Maxime S, L A A, Namchul C, Ibrahim D, Ulrich B, Erkki A, Tom W, M B O. Adv. Mater., 2016, 28(37): 8144.

doi: 10.1002/adma.v28.37
[55]
Geng X S, Wang F W, Tian H, Feng Q X, Zhang H N, Liag R R, Shen Y, Ju Z Y, Gou G Y, Deng N Q, Li Y T, Ren J, Xie D, Yang Y, Ren T L. ACS Nano, 2020, 14(3): 2860.

doi: 10.1021/acsnano.9b06345
[56]
Zhang Z X, Xu C H, Zhu C Y, Tong X W, Fu C, Wang J, Cheng Y L, Luo L B. Sens. Actuat. A Phys., 2021, 332: 113176.

doi: 10.1016/j.sna.2021.113176
[57]
Cheng Y, Shi Z F, Yin S T, Li Y, Li S, Liang W Q, Wu D, Tian Y T, Li X J. Sol. Energy Mater. Sol. Cells, 2020, 204: 110230.

doi: 10.1016/j.solmat.2019.110230
[58]
Asuo I M, Banerjee D, Pignolet A, Nechache R, Cloutier S G. Phys. Status Solidi RRL Rapid Res. Lett., 2021, 15(4): 2000537.
[59]
Liu J Q, Gao Y, Wu G A, Tong X W, Xie C, Luo L B, Liang L, Wu Y C. ACS Appl. Mater. Interfaces, 2018, 10(33): 27850.

doi: 10.1021/acsami.8b08387
[60]
Zhao F Y, Xu K, Luo X, Liang Y L, Peng Y Q, Lu F P. Adv. Opt. Mater., 2018, 6(1): 1700509.
[61]
Qu W, Weng S K, Zhang L P, Sun M, Liu B, Du W J, Zhang Y W. Appl. Phys. Express, 2020, 13(12): 121001.

doi: 10.35848/1882-0786/abc5fa
[62]
Cao F R, Liao Q L, Deng K M, Chen L, Li L, Zhang Y. Nano Res., 2018, 11(3): 1722.

doi: 10.1007/s12274-017-1790-1
[63]
Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H, Cho J H. Adv. Mater., 2015, 27(1): 41.

doi: 10.1002/adma.v27.1
[64]
Wang Y S, Zhang Y P, Lu Y, Xu W D, Mu H R, Chen C Y, Qiao H, Song J C, Li S J, Sun B Q, Cheng Y B, Bao Q L. Adv. Opt. Mater., 2015, 3(10): 1303.

doi: 10.1002/adom.v3.10
[65]
Spina M, Lehmann M, Náfrádi B, Bernard L, Bonvin E, Gaál R, Magrez A, Forró L, Horváth E. Small, 2015, 11(37): 4824.

doi: 10.1002/smll.v11.37
[66]
Qian L, Sun Y L, Wu M M, Xie D, Ding L M, Shi G Q. Adv. Mater., 2017, 29(22): 1606175.

doi: 10.1002/adma.v29.22
[67]
Feng F, Wang T, Qiao J, Min C J, Yuan X C, Somekh M. ACS Appl. Mater. Interfaces, 2021, 13(51): 61496.

doi: 10.1021/acsami.1c16631
[68]
Zhang Z X, Zeng L H, Tong X W, Gao Y, Xie C, Tsang Y H, Luo L B, Wu Y C. J. Phys. Chem. Lett., 2018, 9(6): 1185.

doi: 10.1021/acs.jpclett.8b00266
[69]
Zeng L H, Chen Q M, Zhang Z X, Wu D, Yuan H Y, Li Y Y, Qarony W, Lau S P, Luo L B, Tsang Y H. Adv. Sci., 2019, 6(19): 1901134.

doi: 10.1002/advs.v6.19
[70]
Fang C, Wang H Z, Shen Z X, Shen H Z, Wang S, Ma J Q, Wang J, Luo H M, Li D H. ACS Appl. Mater. Interfaces, 2019, 11(8): 8419.

doi: 10.1021/acsami.8b20538
[71]
Kang D H, Pae S R, Shim J, Yoo G, Jeon J, Leem J W, Yu J S, Lee S, Shin B, Park J H. Adv. Mater., 2016, 28(35): 7799.

doi: 10.1002/adma.v28.35
[72]
Guo H, Tong Y, Fan H B, Ye Q, Zhang J, Wang H Y, Cao F R, Li L, Wang H Q. Sci. China Phys. Mech. Astron., 2022, 65(7): 274204.

doi: 10.1007/s11433-021-1827-x
[73]
Zumeit A, Dahiya A S, Christou A, Mukherjee R, Dahiya R. Adv. Mater. Technol., 2022, 7(12): 2200772.
[74]
Hou X B, Hong X T, Lin F Y, Cui J Z, Dai Q, Tian Q L, Meng B H, Liu Y J, Tang J L, Li K X, Liao L, Wei Z P. Photon. Res., 2023, 11(4): 541.

doi: 10.1364/PRJ.480612
[75]
Saran R, Curry R J. Nat. Photonics, 2016, 10(2): 81.

doi: 10.1038/nphoton.2015.280
[76]
Steigerwald M L, Alivisatos A P, Gibson J M, Harris T D, Kortan R, Muller A J, Thayer A M, Duncan T M, Douglass D C, Brus L E. J. Am. Chem. Soc., 1988, 110(10): 3046.

doi: 10.1021/ja00218a008
[77]
Zhang J B, Crisp R W, Gao J B, Kroupa D M, Beard M C, Luther J M. J. Phys. Chem. Lett., 2015, 6(10): 1830.

doi: 10.1021/acs.jpclett.5b00689
[78]
McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D, Levina L, Sargent E H. Nat. Mater., 2005, 4(2): 138.

doi: 10.1038/nmat1299
[79]
García de Arquer F P, Gong X W, Sabatini R P, Liu M, Kim G H, Sutherland B R, Voznyy O, Xu J X, Pang Y, Hoogland S, Sinton D, Sargent E. Nat. Commun., 2017, 8: 14757.

doi: 10.1038/ncomms14757
[80]
Liu C, Wang K, Du P C, Wang E M, Gong X, Heeger A J. Nanoscale, 2015, 7(39): 16460.

doi: 10.1039/C5NR04575D
[81]
Zhang J Y, Xu J L, Chen T, Gao X, Wang S D. ACS Appl. Mater. Interfaces, 2019, 11(47): 44430.

doi: 10.1021/acsami.9b14645
[82]
Yu Y, Zhang Y T, Zhang Z, Zhang H T, Song X X, Cao M X, Che Y L, Dai H T, Yang J B, Wang J L, Zhang H, Yao J Q. J. Phys. Chem. Lett., 2017, 8(2): 445.
[83]
Zhao D, Huang J, Qin R H, Yang G J, Yu J S. Adv. Opt. Mater., 2018, 6(23): 1870090.

doi: 10.1002/adom.v6.23
[84]
Pan W T, Tan M R, He Y H, Wei H T, Yang B. Nano Lett., 2022, 22(6): 2277.

doi: 10.1021/acs.nanolett.1c04569
[85]
Hao H Z, Jun Z F, Shi A Q, Miao Z, Ling M X, Xiao W J, Jian Z, Jian W. ACS Energy Lett., 2018, 3(3): 555.

doi: 10.1021/acsenergylett.8b00100
[86]
Miao Z, Jun Z F, Shi A Q, Qian S Q, Bin W W, Ling M X, Jian Z, Hua T W. J. Mater. Chem. A, 2017, 5(7): 3589.

doi: 10.1039/C7TA00211D
[87]
Dou L T, Yang Y, You J B, Hong Z R, Chang W H, Li G, Yang Y,. Nat. Commun., 2014, 5: 5404.

doi: 10.1038/ncomms6404
[88]
Chen S, Teng C J, Zhang M, Li Y R, Xie D, Shi G Q. Adv. Mater., 2016, 28(28): 5969.

doi: 10.1002/adma.v28.28
[89]
Shen L, Lin Y Z, Bao C X, Bai Y, Deng Y H, Wang M M, Li T, Lu Y F, Gruverman A, Li W W, Huang J S. Mater. Horiz., 2017, 4(2): 242.

doi: 10.1039/C6MH00508J
[90]
Lin Q Q, Armin A, Lyons D M, Burn P L, Meredith P. Adv. Mater., 2015, 27(12): 2060.

doi: 10.1002/adma.v27.12
[91]
Wang Y K, Yang D Z, Zhou X K, Ma D G, Vadim A, Ahamad T, Alshehri S M. Adv. Opt. Mater., 2017, 5(12): 1700213.

doi: 10.1002/adom.v5.12
[92]
Wu G, Fu R L, Chen J H, Yang W T, Ren J, Guo X K, Ni Z Y, Pi X D, Li C Z, Li H Y, Chen H Z. Small, 2018, 14(39): 1802349.
[93]
Xu W Z, Guo Y K, Zhang X T, Zheng L Y, Zhu T, Zhao D H, Hu W P, Gong X. Adv. Funct. Mater., 2018, 28(7): 1705541.

doi: 10.1002/adfm.v28.7
[94]
Li C L, Ma Y, Xiao Y F, Shen L, Ding L M. InfoMat, 2020, 2(6): 1247.

doi: 10.1002/inf2.v2.6
[95]
I S M, Valerio A, Riccardo C, L A A, Wei P, Ibrahim D, Jian Y M, Sjoerd H, H S E, M B O. Nat. Commun., 2015, 6(Nov.): 8724.
[96]
Zhang X H, Yang S Z, Zhou H, Liang J W, Liu H W, Xia H, Zhu X L, Jiang Y, Zhang Q L, Hu W, Zhang X J, Liu H J, Hu W D, Wang X, Pan A L. Adv. Mater., 2017, 29(21): 1604431.
[97]
Cong H, Chu X B, Wan F S, Chu Z M, Wang X Y, Ma Y, Jiang J Z, Shen L, You J B, Xue C L. Small Methods, 2021, 5(8): 2100517.
[98]
Ka I, Gerlein L F, Asuo I M, Nechache R, Cloutier S G. Nanoscale, 2018, 10(19): 9044.

doi: 10.1039/C7NR08608C
[99]
Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D, Shen L. Light. Sci. Appl., 2020, 9: 31.

doi: 10.1038/s41377-020-0264-5
[1] Juan Ma, Ruiyu Yang, Yanfeng Chen, Ying Liu, Shufen Chen. Recent Advances in Quasi-Two-Dimensional Blue Perovskite Light- Emitting Diodes [J]. Progress in Chemistry, 2024, 36(2): 224-233.
[2] Weiran Chen, Lin Ma, Ting Zhao, Zhengguang Yan, Jiawen Xiao, Zhenzhong Wang, Xiaodong Han. Rare EarthDoped Lead Halide Perovskites: Synthesis, Properties and RadiationDetectors [J]. Progress in Chemistry, 2023, 35(12): 1864-1880.
[3] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[4] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[5] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[6] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[7] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[8] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[9] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[10] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[11] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[12] Jingjing Xiao, Mu Wang, Weijie Zhang, Xiuying Zhao, Anchao Feng, Liqun Zhang. Preparation and Application of Lead Halide Perovskite-Polymer Composites [J]. Progress in Chemistry, 2021, 33(10): 1731-1740.
[13] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[14] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[15] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.