中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (1): 132-144 DOI: 10.7536/PC230521 Previous Articles   Next Articles

• Review •

Structural Regulation and Design of Electrode Materials and Electrolytes for Fast-Charging Lithium-Ion Batteries

Disheng Yu1, Changlin Liu1, Xue Lin1, Lizhi Sheng1(), Lili Jiang2()   

  1. 1 College of Material Science and Engineering, Beihua University, Jilin 132013, China
    2 College of Material Science and Engineering Jilin Institute of Chemical Technology, Jilin 132022, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: shengli_zhi@126.com (Lizhi Sheng); jianglidipper@126.com (Lili Jiang)
  • Supported by:
    Jilin Province Science and Technology Development Plan Project(YDZJ202301ZYTS293); Jilin Province Science and Technology Development Plan Project(20210101065JC); National Natural Science Foundation of China(51902006); China Scholarship Council(202108220125); Science and Technology Innovative Development Program of Jilin City(20210103112)
Richhtml ( 23 ) PDF ( 283 ) Cited
Export

EndNote

Ris

BibTeX

Achieving fast charging of lithium-ion batteries is an effective way to promote the popularity of electric vehicles and solve environmental and energy problems. However, the slow kinetics and increased safety risks of conventional lithium-ion battery systems under fast charging conditions severely hinder the practical application of this technology. This paper reviews the latest research progress in the structural regulation and design of electrode materials and electrolytes for fast-charging lithium-ion batteries. First, we systematically introduce the research progress made in recent years within the scope of improving the diffusion rate of Li-ion in electrode materials by structural modulation of electrode materials. The review focused on optimizing the ion/electron conductivity of the materials and shortening the Li-ion transfer path. Then, we systematically introduce the methods to improve the fast charging performance through the regulation and design of electrolytes, in terms of improving the ion conductivity of electrolytes and regulating Li-ion solvation structure and then highlight the acceleration of Li-ion de-solvation process by regulating the lithium salt concentration and Li-ion solvent interactions with the goal of achieving promotion of Li-ion transfer at the phase interface. Finally, the key scientific issues facing fast-charging Li-ion batteries is summarized as well as the future research directions.

Contents

1 Introduction

2 Electrode materials

2.1 Expanding the material layer spacing

2.2 Nanostructure regulation

2.3 Surface coating

2.4 Porous structure regulation

2.5 Vertical array structure

2.6 Doping

3 Electrolytes

3.1 Low viscosity solvent

3.2 Additive

3.3 Regulating solvation

4 Conclusion and outlook

Fig. 1 (a) Schematic diagrams of Li+ diffusion path in CG and N-RG; (b) Schematic structure of the binding conditions of N in N-RG; (c) Rate performance of the LiFePO4/N-RG full cell and LiFePO4/CG full cell[16]. Copyright 2022, Elsevier
Fig. 2 (a) Schematic illustration of shortening the lithium-ion diffusion distance along the [010]; (b) Rate capability at the C-rate ranging from 1~30 C[24]. Copyright 2019, American Chemical Society; (c) SEM images of U-LTO-NHMS[25]. Copyright 2019, American Elsevier
Fig. 3 (a) Structural diagram of amorphous Al2O3@graphite. (b) HR-TEM result of amorphous Al2O3@graphite. (c) Rate capabilities at different current densities[32]. Copyright 2019, Elsevier. (d) Schematic diagram of interface modification; (e) Gradient phosphate polyanion doping schematic diagram and structure model for pristine LiNi0.6Co0.2Mn0.2O2 and P- LiNi0.6Co0.2Mn0.2O2@Li3PO4-PANI[33]. Copyright 2019, American Chemical Society
Fig. 4 (a) Schematic scheme of pristine graphite and KOH etched graphite[34]. Copyright 2015, Elsevier. (b) Schematic illustration of the preparation of acid treated graphite and KOH-etched graphite[35]. Copyright 2020, Elsevier. (c) Schematic illustration of anode fabrication processes[36]. Copyright 2020, Elsevier
Fig. 5 (a) Random electrode microstructure containing a tortuous porous network made by CTC directional electrode microstructure with vertical pore arrays made by FTC. (b) Rate performance of the FTC electrodes with different solid content[38]. Copyright 2021, Elsevier. (c) Li+ concentration in electrolyte. (d) Li+ concentration distribution in electrolyte. (e) Electrode overpotential in electrolyte[39]. Copyright 2022, Wiley Blackwell
Fig. 6 (a) EDS elemental mapping images of Cr-TNO@VGTC[43]. Copyright 2020, Wiley VCH Verlag. (b) The EDS of K1Zr0.5. (c) The Electrochemical performance of K1Zr0.5[44]. Copyright 2018, Elsevier
Fig. 7 (a) Ionic conductivity; (b) Cryo-TEM images of the graphite surface after 1000 cycles in Gen2 and M9F1; (c) Voltage profiles over 4 C constant current cycling duration in M9F1; (d) Voltage profiles over 4 C constant current cycling duration in Gen2[49]. Copyright 2022, Wiley VCH Verlag
Fig. 8 (a) Schematic illustration of uniform and damaged CEI formed in nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode with and without LiBOB+DA additives; (b) Rate performance of conventional electrolyte (1.1 mol·L?1 LiPF6 EC/DEC(1:1)) and LiBOB+DA [53]. Copyright 2021, Elsevier BV
Fig. 9 (a) Representative environment of Li+ in a conventional dilute solution and salt-superconcentrated solution[56]. Copyright 2014, American Chemical Society. (b) Reduced activation energy (Ea) for Li+ desolvation and diffusion across an SEI[63]. Copyright 2020, Elsevier
Fig. 10 (a) The inorganic compounds on graphite anode. (b) The SEI attached on graphite layer. (c) Rate capability for lithium of graphite[67]. Copyright 2020, John Wiley and Sons Ltd. (d) MD simulated electrolyte structure of 1.4 mol·L?1 LiFSI in BDE/DME. (e) Redial distribution functions of Li-OBDE、Li-ODME、Li-OFSI pairs calculated from MD simulation trajectories. (f) Raman spectra of BDE/DME electrolyte[68]. Copyright 2022, Elsevier BV
Fig. 11 (a) Binding energy of Li+ with solvents and anions based on DFT calculations[70]. Copyright 2020, John Wiley and Sons Ltd. (b) AMID simulated atomic SEI structure between graphite and electrolytes. (c) Rate performance of NG||Li cell with 1.8 mol·L?1 LiFSI DOL and 1.0 mol·L?1 LiPF6 EC/DMC (1:1 by vol.)[71]. Copyright 2022, Wiley Blackwell
[1]
Richard S, Ralf W, Gerhard H, Tobias P, Martin W. Nat. Energy, 2018, 3: 267.

doi: 10.1038/s41560-018-0107-2
[2]
Naireeta D, Rajendra S, Richard R B, Kevin B. Energies, 2021, 14: 7566.

doi: 10.3390/en14227566
[3]
Collin R, Miao Y, Yokochi A, Enjeti P, von Jouanne A. Energies, 2019, 12(10): 1839.

doi: 10.3390/en12101839
[4]
Chen J Y, Ji C Z, Endler E, Li R H, Liu L S, Li Y L, Zheng S Q, Vetterlein S, Gao M, Du J Y, Parkes M, Ouyang M, Marinescu M, Offer G, Wu B. eTransportation, 2019, 1: 100011.

doi: 10.1016/j.etran.2019.100011
[5]
Okubo M, Hosono E, Kim J, Enomoto M, Kojima N, Kudo T, Zhou H S, Honma I. J. Am. Chem. Soc., 2007, 129(23): 7444.

doi: 10.1021/ja0681927
[6]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.

doi: 10.1126/science.1212741
[7]
Manuel W, Raffael R, Johannes K, Yehonatan L, Natasha R L, Philip M, Lukas S, Thomas W, Margret W M, Doron A, Martin W, Yair E E, Jürgen J. Adv. Energy Mater., 2021, 11: 2101126.

doi: 10.1002/aenm.v11.33
[8]
Yao Y X, Chen X, Yao N, Gao J H, Xu G, Ding J F, Song C L, Cai W L, Yan C, Zhang Q. Angewandte Chemie Int. Ed., 2023, 62(4): e202380461.

doi: 10.1002/anie.v62.4
[9]
Zhang S S. J. Power Sources, 2006, 161(2): 1385.
[10]
Xu L, Xiao Y, Yang Y, Xu R, Yao Y X, Chen X R, Li Z H, Yan C, Huang J Q. Adv. Mater., 2023, 35(42): 2301881.

doi: 10.1002/adma.v35.42
[11]
Xu L, Yang Y, Xiao Y, Cai W L, Yao Y X, Chen X R, Yan C, Yuan H, Huang J Q. J. Energy Chem., 2022, 67: 255.
[12]
Xu L, Xiao Y, Yang Y, Yang S J, Chen X R, Xu R, Yao Y X, Cai W L, Yan C, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2022, 61(39): e202210365.

doi: 10.1002/anie.v61.39
[13]
Andrew M C, Alision R D, Stephen E T, Bryant J P, Andrew N J, Kandler S. J. Electrochem. Soc., 2019, 166: A1412.

doi: 10.1149/2.0451908jes
[14]
Wang X, Zeng W, Hong L, Xu W W, Yang H K, Wang F, Duan H G, Tang M, Jiang H Q. Nat. Energy, 2018, 3(3): 227.

doi: 10.1038/s41560-018-0104-5
[15]
Jana A, García R E. Nano Energy, 2017, 41: 552.

doi: 10.1016/j.nanoen.2017.08.056
[16]
Xu C, Ma G, Yang W, Che S, Li Y, Jia Y, Liu H L, Chen F J, Zhang G, Liu H C, Wu N, Huang G Y, Li Y F. Electrochimica Acta, 2022, 415: 140198.

doi: 10.1016/j.electacta.2022.140198
[17]
Kim T H, Jeon E K, Ko Y, Jang B Y, Kim B S, Song H K. J. Mater. Chem. A, 2014, 2(20): 7600.
[18]
Jiang Y, Song D Y, Wu J, Wang Z X, Huang S S, Xu Y, Chen Z W, Zhao B, Zhang J J. ACS Nano, 2019, 13(8): 9100.

doi: 10.1021/acsnano.9b03330 pmid: 31323180
[19]
Wang S L, Zhang Z X, Deb A, Yang C C, Yang L, Hirano S I. Electrochimica Acta, 2014, 143: 297.

doi: 10.1016/j.electacta.2014.07.139
[20]
Wang G X, Liu H, Liu J, Qiao S Z, Lu G M, Munroe P, Ahn H. Adv. Mater., 2010, 22(44): 4944.

doi: 10.1002/adma.v22.44
[21]
Wang X, Weng Q H, Yang Y J, Bando Y, Golberg D. Chem. Soc. Rev., 2016, 45(15): 4042.

doi: 10.1039/c5cs00937e pmid: 27196691
[22]
Mendoza-Sánchez B, Gogotsi Y. Adv. Mater., 2016, 28(29): 6104.

doi: 10.1002/adma.v28.29
[23]
Wang D D, Shan Z Q, Tian J H, Chen Z. Nanoscale, 2019, 11(2): 520.

doi: 10.1039/C8NR07249C
[24]
Zhao Y, Peng L L, Liu B R, Yu G H. Nano Lett., 2014, 14(5): 2849.

doi: 10.1021/nl5008568 pmid: 24730515
[25]
Wang D D, Liu H D, Li M Q, Wang X F, Bai S, Shi Y, Tian J H, Shan Z Q, Meng Y S, Liu P, Chen Z. Energy Storage Mater., 2019, 21: 361.
[26]
Verma P, Novák P. Carbon, 2012, 50(7): 2599.

doi: 10.1016/j.carbon.2012.02.019
[27]
Jiang L L, Cheng X B, Peng H J, Huang J Q, Zhang Q. eTransportation, 2019, 2: 100033.

doi: 10.1016/j.etran.2019.100033
[28]
Wang C, Sheng L Z, Jiang M H, Lin X R, Wang Q, Guo M Q, Wang G, Zhou X M, Zhang X, Shi J Y, Jiang L L. J. Power Sources, 2023, 555: 232405.
[29]
Li H Q, Zhou H S. Chem. Commun., 2012, 48(9): 1201.

doi: 10.1039/C1CC14764A
[30]
Lyu H L, Li J L, Wang T, Thapaliya B P, Men S, Jafta C J, Tao R M, Sun X G, Dai S. ACS Appl. Energy Mater., 2020, 3(6): 5657.

doi: 10.1021/acsaem.0c00633
[31]
Guan Y B, Shen J R, Wei X F, Zhu Q Z, Zheng X H, Zhou S Q, Xu B. Appl. Surf. Sci., 2019, 481: 1459.

doi: 10.1016/j.apsusc.2019.03.213
[32]
Kim D S, Kim Y E, Kim H. J. Power Sources, 2019, 422: 18.
[33]
Ran Q W, Zhao H Y, Shu X H, Hu Y Z, Hao S, Shen Q Q, Liu W, Liu J T, Zhang M L, Li H, Liu X Q. ACS Appl. Energy Mater., 2019, 2(5): 3120.

doi: 10.1021/acsaem.8b02112
[34]
Cheng Q, Yuge R, Nakahara K, Tamura N, Miyamoto S. J. Power Sources, 2015, 284: 258.
[35]
Kim J, Nithya Jeghan S M, Lee G. Microporous Mesoporous Mater., 2020, 305: 110325.

doi: 10.1016/j.micromeso.2020.110325
[36]
Chen K H, Namkoong M J, Goel V, Yang C L. J. Power Sources, 2020, 471: 228475.

doi: 10.1016/j.jpowsour.2020.228475
[37]
Billaud J, Bouville F, Magrini T, Villevieille C, Studart A R. Nat. Energy, 2016, 1(8): 16097.

doi: 10.1038/nenergy.2016.97
[38]
Guo Y M, Jiang Y L, Zhang Q, Wan D Y, Huang C. J. Power Sources, 2021, 506: 230052.
[39]
Tu S B, Lu Z H, Zheng M T, Chen Z H, Wang X C, Cai Z, Chen C J, Wang L, Li C H, Seh Z W, Zhang S Q, Lu J, Sun Y M. Adv. Mater., 2022, 34(39): 2202892.

doi: 10.1002/adma.v34.39
[40]
Cai Y X, Ku L, Wang L S, Ma Y T, Zheng H F, Xu W J, Han J T, Qu B H, Chen Y Z, Xie Q S, Peng D L. Sci. China Mater., 2019, 62(10): 1374.

doi: 10.1007/s40843-019-9456-1
[41]
Huang S F, Li Z P, Wang B, Zhang J J, Peng Z Q, Qi R J, Wang J, Zhao Y F. Adv. Funct. Mater., 2018, 28(10): 1706294.

doi: 10.1002/adfm.v28.10
[42]
Wang J X, Xia Y, Liu Y, Li W, Zhao D Y. Energy Storage Mater., 2019, 22: 147.
[43]
Zhu H, Liu B, Liang Y, Tu J P. Adv. Funct. Mater., 2020, 30: 2002665.

doi: 10.1002/adfm.v30.25
[44]
Wu J B, Xu Y L, Chen Y J, Li L, Wang H, Zhao J. J. Power Sources, 2018, 401: 142.
[45]
Verma P, Maire P, Novák P. Electrochimica Acta, 2010, 55(22): 6332.

doi: 10.1016/j.electacta.2010.05.072
[46]
Xu K. Chem. Rev., 2004, 104(10): 4303.

doi: 10.1021/cr030203g
[47]
Hilbig P, Ibing L, Winter M, Cekic-Laskovic I. Energies, 2019, 12(15): 2869.

doi: 10.3390/en12152869
[48]
Logan E R, Hall D S, Cormier M M E, Taskovic T, Bauer M, Hamam I, Hebecker H, Molino L, Dahn J R. J. Phys. Chem. C, 2020, 124(23): 12269.

doi: 10.1021/acs.jpcc.0c02370
[49]
Gao H P, Yan Q Z, Holoubek J, Yin Y J, Bao W, Liu H D, Baskin A, Li M Q, Cai G R, Li W K, Tran D, Liu P, Luo J, Meng Y S, Chen Z. Adv. Energy Mater., 2023, 13(5): 2202906.

doi: 10.1002/aenm.v13.5
[50]
Cai W L, Yao Y X, Zhu G L, Yan C, Jiang L L, He C X, Huang J Q, Zhang Q. Chem. Soc. Rev., 2020, 49(12): 3806.

doi: 10.1039/C9CS00728H
[51]
Ramasubramanian A, Yurkiv V, Foroozan T, Ragone M, Shahbazian-Yassar R, Mashayek F. J. Phys. Chem. C, 2019, 123(16): 10237.

doi: 10.1021/acs.jpcc.9b00436
[52]
Shi J L, Ehteshami N, Ma J L, Zhang H, Liu H D, Zhang X, Li J, Paillard E. J. Power Sources, 2019, 429: 67.

doi: 10.1016/j.jpowsour.2019.04.113
[53]
Cheng F Y, Zhang X Y, Qiu Y G, Zhang J X, Liu Y, Wei P, Ou M Y, Sun S X, Xu Y, Li Q, Fang C, Han J T, Huang Y H. Nano Energy, 2021, 88: 106301.

doi: 10.1016/j.nanoen.2021.106301
[54]
Wang X Y, Li S Y, Zhang W D, Wang D, Shen Z Y, Zheng J P, Zhuang H L, He Y, Lu Y Y. Nano Energy, 2021, 89: 106353.

doi: 10.1016/j.nanoen.2021.106353
[55]
Zheng J M, Lochala J A, Kwok A, Daniel Deng Z, Xiao J. Adv. Sci., 2017, 4(8): 1700032.

doi: 10.1002/advs.v4.8
[56]
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. J. Am. Chem. Soc., 2014, 136(13): 5039.

doi: 10.1021/ja412807w pmid: 24654781
[57]
Peled E, Menkin S. J. Electrochem. Soc., 2017, 164(7): A1703.
[58]
Suo L M, Xue W J, Gobet M, Greenbaum S G, Wang C, Chen Y M, Yang W L, Li Y X, Li J. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(6): 1156.

doi: 10.1073/pnas.1712895115
[59]
Yao Y X, Yao N, Zhou X R, Li Z H, Yue X Y, Yan C, Zhang Q. Adv. Mater., 2022, 34(45): 2206448.

doi: 10.1002/adma.v34.45
[60]
Monroe C, Newman J. J. Electrochem. Soc., 2005, 152(2): A396.
[61]
Wu M F, Wen Z Y, Liu Y, Wang X Y, Huang L Z. J. Power Sources, 2011, 196(19): 8091.
[62]
Yao Y X, Wan J, Liang N Y, Yan C, Wen R, Zhang Q. J. Am. Chem. Soc., 2023, 145(14): 8001.

doi: 10.1021/jacs.2c13878
[63]
Xu R, Yan C, Xiao Y, Zhao M, Yuan H, Huang J Q. Energy Storage Mater., 2020, 28: 401.
[64]
Yamada Y, Yaegashi M, Abe T, Yamada A. Chem. Commun., 2013, 49(95): 11194.

doi: 10.1039/c3cc46665e
[65]
Yamada Y, Wang J H, Ko S, Watanabe E, Yamada A. Nat. Energy, 2019, 4(4): 269.

doi: 10.1038/s41560-019-0336-z
[66]
Cao X, Zou L F, Matthews B E, Zhang L C, He X Z, Ren X D, Engelhard M H, Burton S D, El-Khoury P Z, Lim H S, Niu C J, Lee H, Wang C S, Arey B W, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Energy Storage Mater., 2021, 34: 76.
[67]
Jiang L L, Yan C, Yao Y X, Cai W L, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2021, 60(7): 3402.

doi: 10.1002/anie.v60.7
[68]
Zhang G Z, Deng X L, Li J W, Wang J, Shi G L, Yang Y, Chang J, Yu K, Chi S S, Wang H, Wang P, Liu Z B, Gao Y, Zheng Z J, Deng Y H, Wang C Y. Nano Energy, 2022, 95: 107014.

doi: 10.1016/j.nanoen.2022.107014
[69]
Cai W L, Deng Y, Deng Z W, Jia Y, Li Z H, Zhang X M, Xu C, Zhang X Q, Zhang Y, Zhang Q. Adv. Energy Mater., 2023, 13(31): 2301396.

doi: 10.1002/aenm.v13.31
[70]
Yao Y X, Chen X, Yan C, Zhang X Q, Cai W L, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2021, 60(8): 4090.

doi: 10.1002/anie.v60.8
[71]
Sun C C, Ji X, Weng S T, Li R H, Huang X T, Zhu C N, Xiao X Z, Deng T, Fan L W, Chen L X, Wang X F, Wang C S, Fan X L. Adv. Mater., 2022, 34(43): 2206020.

doi: 10.1002/adma.v34.43
[72]
Lei S, Zeng Z Q, Liu M C, Zhang H, Cheng S J, Xie J. Nano Energy, 2022, 98: 107265.

doi: 10.1016/j.nanoen.2022.107265
[1] Dongrong Yang, Da Zhang, Kun Ren, Fupeng Li, Peng Dong, Jiaqing Zhang, Bin Yang, Feng Liang. All Solid-State Sodium Batteries and Its Interface Modification [J]. Progress in Chemistry, 2023, 35(8): 1177-1190.
[2] Qingping Li, Tao Li, Chenchen Shao, Wei Liu. Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(7): 1053-1064.
[3] Qimeng Ren, Qinglei Wang, Yinwen Li, Xuesheng Song, Xuehui Shangguan, Faqiang Li. High Voltage Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2023, 35(7): 1077-1096.
[4] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[5] Zhao Lanqing, Hou Minjie, Zhang Da, Zhou Yingjie, Xie Zhipeng, Liang Feng. Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes for Solid-State Sodium Ion Batteries [J]. Progress in Chemistry, 2023, 35(11): 1625-1637.
[6] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[7] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[8] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[9] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[10] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[11] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[12] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[13] Shihao Zhou, Xianwen Wu, Yanhong Xiang, Ling Zhu, Zhixiong Liu, Caixian Zhao. Manganese-Based Cathode Materials for Aqueous Zinc Ion Batteries [J]. Progress in Chemistry, 2021, 33(4): 649-669.
[14] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[15] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.