中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (1): 106-119 DOI: 10.7536/PC230519 Previous Articles   Next Articles

• Review •

Saccharide Sensors Based on Phenylboronic Acid Derivatives

Tan Shi, Donghui Kou, Yanan Xue, Shufen Zhang, Wei Ma()   

  1. State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: weima@dlut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22278064); National Natural Science Foundation of China(21878040); National Natural Science Foundation of China(22238002); Fundamental Research Funds for the Central Universities(DUT22LAB610); Research and Innovation Team Project of Dalian University of Technology(DUT2022TB10)
Richhtml ( 13 ) PDF ( 170 ) Cited
Export

EndNote

Ris

BibTeX

Phenylboronic acid, a kind of synthetic molecule that can covalently bind with saccharide, has attracted wide attention in the field of saccharide detection. It has the characteristics of good stability, strong recognition ability and easy coupling with various detection systems. In this paper, the mechanism of phenylboronic acid binding to saccharide and its specific applications in detection was first introduced. What’s more, the strategies for structural modification, in the manner of introducing electron-withdrawing group or electron-donating group into ortho, meta and para position of the boric acid group on the benzene ring, were mainly discussed, and the progress made in reducing pKa and improving the selectivity according to these strategies were summarized. At the same time, the saccharide sensors based on these new phenylboronic acid derivatives in recent years were also summarized, including electrochemical sensors, fluorescence sensors, gels/microgels and photonic crystals, and their detection principles were discussed. The main analytes are monosaccharides with similar structures, such as glucose and fructose. Finally, the research of these sensors based on phenylboronic acid derivatives was compared, and their advantages and disadvantages were analyzed. Meanwhile, the applications of saccharide sensors based on phenylboronic acid derivatives in the future are prospected from two aspects including the integration of diagnosis and treatment and the identification of saccharide in complex chemical environment.

Contents

1 Introduction

2 Phenylboronic acid and its derivatives

2.1 Reaction principle of phenylboronic acid and saccharides

2.2 Structural modification strategy of phenylboronic acid

2.3 Detection principle of saccharides in phenylboronic acid

3 Saccharide sensors based on phenylboronic acid derivatives

3.1 Electrochemical sensors for saccharide detections

3.2 Fluorescent sensors for saccharide detections

3.3 Photonic crystals for saccharide detections

3.4 Gels for saccharide detections

4 Conclusion and outlook

Fig. 1 Equilibrium of different forms of phenylboronic acid in solution environment and their response equilibria with saccharides
Fig. 2 (a) Molecular structure of common electron- withdrawing modified phenylboronic acid derivatives;(b) molecular structure of ortho-electron-donating modified boronic acid derivatives; (c) molecular structure of 2-acrylamidophenylboronic acid; (d) molecular structure of common dibasic phenylboronic acid derivatives
Fig. 3 Ionization equilibria of electron-donating group functionalized phenylboronic acid in solution[39]
Fig. 4 Ionization equilibrium of 2-acrylamidophenylboronic acid in solution
Fig. 5 Molecular structure of diboronic acid (DBA2+)[48]
Fig. 6 (a) Mechanism of fructose detection by 4-Ferrocene- phenylboronicacid (4-Fc-PBA)/natural β-cyclodextrins (β-CDs) calibration lines based on (b) oxidation peaks and on (c) reduction peaks (fructose concentration up to 5 mM)[62]
Fig. 7 Plot of shift in the surface potential (ΔVout) at different concentrations of glucose dissolved in human serum (Approximate curve was fitted by Langmuir adsorption isotherm) [64]
Fig. 8 Fluorescence response of composite probe (5?mg·mL?1) upon addition of various concentrations of glucose in a pH 8 PBS solution. Inset: semilogarithmic plot of (F?F0)/F0 of composite probe vs the concentration of glucose [73]
Fig. 9 (a) Structures and synthetic procedure of fluorescence probe 1 and 2[82]; (b) structures of fluorescence probe 1F, 2N and 3Ph[83]
Fig. 10 Fluorescence intensities at 494 nm of 1F/γ-CyD (a) and 2N/γ-CyD (b) at various concentrations of saccharides (D-glucose, D-fructose, D-galactose, and L-glucose) in DMSO/water (2/98 in v/v) (The excitation wavelengths were set as 328 nm for 1F/γ-CyD and 374 nm for 2N/γ-CyD)[83]
Fig. 11 (a) SEM images and (b) glucose response behavior of microgels (5.0 mM PBS, 25.0 ℃)[88]
Fig. 12 Reusability of the hydrogel fibers in sensing glucose(pH=7.4, 1.0~12.0 mM, 24 ℃)[87]
Fig. 13 Stimuli-responsiveness of hydrogels against glucose (0.1 M), fructose (0.1 M), and H2O2 (3%)[93]
Fig. 14 Glucose-dependent <Dh>[Glu]/<Dh>0.0 mM of microgels as a function of the solution temperature, all measurements were made in PBS of pH = 7.4[94]
Fig. 15 Digital photos of P(MMA-NIPAM-AAPBA) three-dimensional photonic crystal sensor based on opal structure at (a) 0 mM and (b) 20 mM glucose concentration[101]
Fig. 16 Reflectance spectrum and photos of inverse opal sensor prepared by adding (a) 0.26 mol (b) 0.52 mol of AAPBA with the increase of glucose concentration[103]
Fig. 17 Peak shift of the Bragg stacks as a function of time in 100 mM glucose solution. Insets show colorimetric readouts of the Bragg stacks, and the control experiment without 3-APBA. Scale bar: 2.0 mm [106]
[1]
Bunn H F, Higgins P J. Science, 1981, 213(4504): 222.

doi: 10.1126/science.12192669 pmid: 12192669
[2]
Taskinen M, Packard C J, Borén J. Nutrients, 2019, 11(9): 1987.

doi: 10.3390/nu11091987
[3]
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H Y, Hélder A, Santos, Pan G. Adv. Sci., 2022, 9(3): 2102466.

doi: 10.1002/advs.v9.3
[4]
Güemes M, Rahman S A, Hussain K. Arch. Dis. Child., 2016, 101(6): 569.

doi: 10.1136/archdischild-2015-308336 pmid: 26369574
[5]
Kawasaki T, Akanuma H, Yamanouchi T. Diabetes Care, 2002, 25(2): 353.

doi: 10.2337/diacare.25.2.353
[6]
Lim S, Taskinen M R, Borén J. Obes. Rev., 2019, 20(4): 599.

doi: 10.1111/obr.v20.4
[7]
Muriel P, López-Sánchez P, Ramos-Tovar E. Int. J. Mol. Sci., 2021, 22(13): 6969.

doi: 10.3390/ijms22136969
[8]
Soto J, Hughes T, Li Y S. ACS Omega, 2019, 4(19): 18312.

doi: 10.1021/acsomega.9b02384
[9]
Bian Z, Qi Y, Xue L, Hu A, Yang H, Chu F. Optik, 2022, 255: 168655.

doi: 10.1016/j.ijleo.2022.168655
[10]
Jeon W Y, Kim H H, Choi Y B. Membranes, 2021, 11(6): 384.

doi: 10.3390/membranes11060384
[11]
Cohen R, Cohen Y, Mukha D, Yehezkeli O. Electrochim. Acta, 2021, 367: 137477.

doi: 10.1016/j.electacta.2020.137477
[12]
Trivedi U B, Lakshminarayana D, Kothari I L, Patel P B, Panchal C J. Sens. Actuator B-Chem., 2009, 136(1): 45.

doi: 10.1016/j.snb.2008.10.020
[13]
Voitechovič E, Vektarienė A, Vektaris G, Jančienė R, Razumienė J, Gurevičienė V. Electroanalysis, 2020, 32(5): 1005.

doi: 10.1002/elan.v32.5
[14]
Jafarzadeh S, Bargahi N, Shamloo H B, Soleymani J. RSC Adv., 2022, 12(14): 8492.

doi: 10.1039/d2ra00035k pmid: 35424830
[15]
Wei M, Li X, Serpe M J. ACS Appl. Polym. Mater., 2019, 1(3): 519.

doi: 10.1021/acsapm.8b00207
[16]
Zhang H, Lu Q, Zuo F, Yuan R, Chen S. Sens. Actuator B-Chem., 2017, 241: 887.

doi: 10.1016/j.snb.2016.11.013
[17]
Kuivila H G, Keough A H, Soboczenski E J. J. Org. Chem., 1954, 19(5): 780.

doi: 10.1021/jo01370a013
[18]
Wen X, Liu Y, Liu Q, Chen Z, Hu X, Xu C, Chen H, Xing M, Qu H, Zhang M. Opt. Express, 2022, 30(26): 47541.

doi: 10.1364/OE.474662 pmid: 36558681
[19]
Li M T, Zhang H, Liu M, Dong B. J. Mater. Chem. C, 2017, 5(18): 4400.
[20]
Zhu J, Liu W, Zhang B, Zhou D, Fan X, Wang X, Liu X. Nanomaterials, 2022, 12(17): 3065.

doi: 10.3390/nano12173065
[21]
Wang Z, Li S. University Chemistry, 2020, 35(07): 95.
(王卓, 李朔. 大学化学, 2020, 35(7): 95.).
[22]
Wang C, Lin B, Zhu H, Bi F, Xiao S, Wang L, Gai G, Zhao L. Molecules, 2019, 24(6): 1089.

doi: 10.3390/molecules24061089
[23]
Kazunori K, Hiroaki M, Masayuki B, Teruo O, Yasuhisa S. J. Am. Chem. Soc., 1998, 120(48): 12694.

doi: 10.1021/ja982975d
[24]
Duin V M, Peters J A, Kieboom A P G, Bekkum V H. Tetrahedron, 1984, 40(15): 2901.

doi: 10.1016/S0040-4020(01)91300-6
[25]
Wu X, Li Z, Chen X, John S F, Tony D, Jiang Y. Chem. Soc. Rev., 2013, 42(20): 8032.

doi: 10.1039/c3cs60148j
[26]
Martínez-Aguirre M A, Medrano F, Ramírez-Rave S, Yatsimirsky A K. J. Phys. Org. Chem., 2022, 35(12): e4425.

doi: 10.1002/poc.v35.12
[27]
Springsteen G, Wang B H. Tetrahedron, 2002, 58(26): 5291.

doi: 10.1016/S0040-4020(02)00489-1
[28]
Yan J, Springsteen G, Deeter S, Wang B H. Tetrahedron, 2004, 60(49): 11205.

doi: 10.1016/j.tet.2004.08.051
[29]
Valenzuela S A, Howard J R, Park H M, Darbha S, Anslyn E V. J. Org. Chem., 2022, 87(22): 15071.

doi: 10.1021/acs.joc.2c01514 pmid: 36318490
[30]
Hoare T, Pelton R. Biomacromolecules, 2008, 9(2): 733.

doi: 10.1021/bm701203r pmid: 18198833
[31]
Li S, Davis E N, Anderson J, Lin Q, Wang Q. Biomacromolecules, 2009, 10(1): 113.

doi: 10.1021/bm8009768
[32]
Matsumoto A, Ikeda S, Harada A, Kataoka K. Biomacromolecules, 2003, 4(5): 1410.

pmid: 12959613
[33]
Zhang C, Losego M D, Braun P V. Chem. Mater., 2013, 25(15): 3239.

doi: 10.1021/cm401738p
[34]
Zhang Y, Wu M, Dai W, Li Y, Wang X, Tan D, Yang Z, Liu S, Xue L, Lei Y. Nanoscale, 2019, 11(13): 6471.

doi: 10.1039/C9NR00668K
[35]
GhavamiNejad A, Li J, Lu B, Zhou L, Lam L, Giacca A, Wu X Y. Adv. Mater., 2019, 31(30): 1901051.

doi: 10.1002/adma.v31.30
[36]
Fu Y, Sun Y, Chen M, Xing W, Xu Y, Qian X, Zhu W. Biomacromolecules, 2022, 23(3): 1251.

doi: 10.1021/acs.biomac.1c01496
[37]
Wang Z, Wang J, Li H, Gu Z. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(47):29512.

doi: 10.1073/pnas.2011099117
[38]
Kim K T, Cornelissen J J, Nolte R J, van Hest J C. J. Am. Chem. Soc., 2009, 131(39): 13908.

doi: 10.1021/ja905652w
[39]
Wulff G, Lauer M, Böhnke H. Angew. Chem.-Int. Edit., 1984, 23(9): 741.

doi: 10.1002/anie.v23:9
[40]
Yang X, Lee M C, Sartain F, Pan X, Lowe C R. Chem.-Eur. J., 2006, 12(33): 8491.

doi: 10.1002/chem.v12:33
[41]
Dowlut M, Hall D G. J. Am. Chem. Soc., 2006, 128(13): 4226.

doi: 10.1021/ja057798c
[42]
Brooks W L, Deng C, Sumerlin B S. ACS Omega, 2018, 3(12): 17863.

doi: 10.1021/acsomega.8b02999
[43]
Lorand J P, Edwards J O. J. Org. Chem., 1959, 24(6): 769.

doi: 10.1021/jo01088a011
[44]
Zhang C, Cano G, Braun P V. Adv. Mater., 2014, 26(32): 5678

doi: 10.1002/adma.201401710
[45]
Hansen J S, Christensen J B, Solling T I, Jakobsen P, Hoeg-Jensen T. Tetrahedron, 2011, 67(6): 1334.

doi: 10.1016/j.tet.2010.11.062
[46]
Carlo F, Christoph A. S, Marcus W, Oliver S, Stefan H, Beate K, Jens D, Christina G, Ernst-Walter K, Rainer H. Angew. Chem.-Int. Edit., 2012, 51:10472.

doi: 10.1002/anie.v51.42
[47]
Maseda M, Miyazaki Y, Takamuku T. J. Mol. Liq., 2021, 341: 117343.

doi: 10.1016/j.molliq.2021.117343
[48]
Wang B, Chou K, Queenan B N, Pennathur S, Bazan G C. Angew. Chem.-Int. Edit., 2019, 58(31): 10612.

doi: 10.1002/anie.v58.31
[49]
Tang Z, Guan Y, Zhang Y. Polym. Chem., 2014, 5(5): 1782.

doi: 10.1039/C3PY01190A
[50]
Sęk J P, Kaczmarczyk S, Guńka K, Kowalczyk A, Borys K M, Kasprzak A, Nowicka A M. Dalton Trans., 2021, 50(3): 880.

doi: 10.1039/D0DT03776A
[51]
Granot E, Tel-Vered R, Lioubashevski O, Willner I. Adv. Funct. Mater., 2008, 18(3): 478.

doi: 10.1002/adfm.v18:3
[52]
Chen L Y, Hwang E, Zhang J. Sensors, 2018, 18(5): 1440.

doi: 10.3390/s18051440
[53]
Cai B, Luo Y, Guo Q, Zhang X, Wu Z. Carbohydr. Res., 2017, 445: 32.

doi: 10.1016/j.carres.2017.04.006
[54]
Wu J, Bremner D H, Li H, Sun X, Zhu L. Mater. Sci. Eng. C-Mater. Biol. Appl., 2016, 69: 1026.

doi: 10.1016/j.msec.2016.07.078
[55]
Robinson S, Dhanlaksmi N. Photonic Sens., 2017, 7(1): 11.

doi: 10.1007/s13320-016-0347-3
[56]
Anzai J. Mater Sci Eng C Mater Biol Appl., 2016, 67: 737.

doi: 10.1016/j.msec.2016.05.079
[57]
Murakami H, Akiyoshi H, Wakamatsu T, Sagara T, Nakashima N. Chem. Lett., 2000, 29(8): 940.

doi: 10.1246/cl.2000.940
[58]
Komkova M A, Valeev R G, Kolyagin Y G, Andreev E A, Beltukov A N, Nikitina V N, Yatsimirsky A K, Karyakin A A, Eliseev A A. Mater. Today Chem., 2022, 26: 101070.
[59]
Takahashi S, Kurosawa S, Anzai J I. Electroanalysis, 2008, 20(7): 816.

doi: 10.1002/elan.v20:7
[60]
Takahashi S, Anzai J. Bunseki Kagaku, 2007, 56(11): 951.

doi: 10.2116/bunsekikagaku.56.951
[61]
Li J, Sun Y, Wei Y, Zheng J. Chin. Chem. Lett., 2013, 24(4): 291.

doi: 10.1016/j.cclet.2013.01.051
[62]
Casulli M A, Taurino I, Hashimoto T, Carrara S, Hayashita T. Small, 2020, 16(44): 2003359.

doi: 10.1002/smll.v16.44
[63]
Tseng A C, Sakata T. ACS Appl. Mater. Interfaces, 2022, 14(21): 24729.

doi: 10.1021/acsami.2c01779
[64]
Kajisa T, Hosoyamada S. Langmuir, 2021, 37(46): 13559.

doi: 10.1021/acs.langmuir.1c01740 pmid: 34753289
[65]
Bao W, Hai W, Bao L, Yang F, Liu Y, Goda T, Liu J. Mater. Chem. Front., 2021, 5(20): 7675.

doi: 10.1039/D1QM00926E
[66]
Wu S, Guo H, Wang L, Xin Y, Cheng Y S, Fan W S. Sens. Actuators B-Chem., 2017, 245: 117.
[67]
Wang K, Zhang R, Yue X, Zhou Z, Bai L, Tong Y, Wang B, Gu D, Wang S, Qiao Y, Liu Q, Xue X, Yin Y, Xi R, Meng M. ACS Sens., 2021, 6(4): 1543.

doi: 10.1021/acssensors.0c02217
[68]
Deng M, Song G, Zhong K, Wang Z, Xia X, Tian Y. Sens. Actuators B-Chem., 2022, 352: 131067.

doi: 10.1016/j.snb.2021.131067
[69]
Yang W, He H, Drueckhammer D G. Angew. Chem. Int. Ed., 2001, 40(9): 1714.

pmid: 11353489
[70]
Springsteen G, Wang B. Chem. Commun., 2001(17): 1608.
[71]
Qiao J, Liu Q, Wu H, Cai H, Qi L. Microchim. Acta, 2019, 186(6): 366.

doi: 10.1007/s00604-019-3475-9
[72]
Xie X, Zhang Z, Jiang Q, Zheng S, Yun Y, Wu H, Li C, Tian F, Su M, Li F. ACS Nano, 2022, 16(12): 20094.

doi: 10.1021/acsnano.2c08708
[73]
Li J, Li X, Weng R, Qiang T, Wang X. Sens. Actuator B-Chem., 2020, 304: 127349.

doi: 10.1016/j.snb.2019.127349
[74]
Ouyang F, Zhang X, Wang T, Shuai Q. Mater. Today Commun., 2022, 33: 104681.
[75]
Cooper C R, James T D. Chem. Lett., 1998, 27(9): 883.

doi: 10.1246/cl.1998.883
[76]
Cao H, Diaz D I, Dicesare N, Lakowicz J R, Heagy M D. Org. Lett., 2002, 4(9): 1503.

doi: 10.1021/ol025723x
[77]
Kashiwazaki G, Watanabe R, Nishikawa A, Kawamura K, Kitayama T, Hibi T. RSC Adv., 2022, 12(24): 15083.

doi: 10.1039/d2ra01569b pmid: 35693230
[78]
Mehta P K, Neupane L N, Lee K H. Sens. Actuators B-Chem., 2023, 375: 132913.

doi: 10.1016/j.snb.2022.132913
[79]
Rahali S, Belhocine Y, Allal H, Bouhadiba A, Assaba I M, Seydou M. Struct. Chem., 2022, 33: 195.

doi: 10.1007/s11224-021-01835-6
[80]
Sugita K, Tsuchido Y, Kasahara C, Casulli M A, Fujiwara S, Hashimoto T, Hayashita T. Front. Chem., 2019, 7: 806.

doi: 10.3389/fchem.2019.00806 pmid: 31828059
[81]
Sugita K, Suzuki Y, Tsuchido Y, Fujiwara S, Hashimoto T, Hayashita T. RSC Adv., 2022, 12(31): 20259.

doi: 10.1039/d2ra03567g pmid: 35919610
[82]
Suzuki Y, Hashimoto T, Hayashita T. RSC Adv., 2022, 12(19): 12145.

doi: 10.1039/d2ra00749e pmid: 35481078
[83]
Suzuki Y, Mizuta Y, Mikagi A, Misawa-Suzuki T, Tsuchido Y, Sugaya T, Hashimoto T, Ema K, Hayashita T. ACS Sens., 2023, 8(1): 218.

doi: 10.1021/acssensors.2c02087
[84]
Shiino D, Murata Y, Kataoka K, Koyama Y, Yokoyama M, Okano T, Sakurai Y. Biomaterials, 1994, 15(2): 121.

pmid: 8011858
[85]
Brooks W L, Sumerlin B S. Chem. Rev., 2016, 116(3): 1375.

doi: 10.1021/acs.chemrev.5b00300
[86]
Zhang Y, Yang J, Zhang J, Li S W, Zheng L S, Zhang Y L, Meng H P, Zhang X G, Wu Z M. J. Mat. Chem. B, 2020, 8(21): 4627.

doi: 10.1039/D0TB00561D
[87]
Yetisen A K, Jiang N, Fallahi A, Montelongo Y, Ruiz-Esparza G U, Tamayol A, Zhang Y S, Mahmood I, Yang S A, Kim K S, Butt H, Khademhosseini A, Yun S H. Adv. Mater., 2017, 29(15): 1606380.

doi: 10.1002/adma.v29.15
[88]
Wu Q, Du X, Chang A, Jiang X, Yan X, Cao X, Farooqic Z H, Wu W. Polym. Chem., 2016, 7(42): 6500.

doi: 10.1039/C6PY01521B
[89]
Wang J, Yang Z, Zhou C, Qiao C, Yuan F, Liu Q, Luo X X. J. Macromol. Sci. Part B-Phys., 2022, 61(4/5): 557.

doi: 10.1080/00222348.2022.2071040
[90]
Liu N, Xiang X, Sun M, Li P, Qin H, Liu H, Zhou Y, Wang L, Wu L, Zhu J. Biosens. Bioelectron. X, 2022, 10: 100110.
[91]
Shan M, Gong C, Li B, Wu J. Polym. Chem., 2017, 8(19): 2997.

doi: 10.1039/C7PY00519A
[92]
Xiang Y, Xian S, Ollier R C, Yu S, Su B, Pramudya I, Webber M J. J. Control. Release, 2022, 348: 601.
[93]
Shen K, Yeh Y Y, Chiu T H, Wang R, Yeh Y C. ACS Biomater. Sci. Eng., 2022, 8(10): 4249.

doi: 10.1021/acsbiomaterials.2c00571
[94]
Zhou M, Lu F, Jiang X, Wu Q, Changa A, Wu W. Polym. Chem., 2015, 6(48): 8306.

doi: 10.1039/C5PY01441G
[95]
Wang Q, Fu M, Guan Y, James T D, Zhang Y. Sci. China Chem., 2020, 63(3): 377.

doi: 10.1007/s11426-019-9680-6
[96]
Chen C, Dong Z G, Shen J H, Chen H W, Zhu Y H, Zhu Z G. ACS Omega, 2018, 3(3): 3211.

doi: 10.1021/acsomega.7b02046
[97]
Morandi V, Marabelli F, Amendola V, Meneghetti M, Comoretto D. Adv. Funct. Mater., 2007, 17(15): 2779.

doi: 10.1002/adfm.v17:15
[98]
Elshaarani T, Yu H J, Wang L, Abdin Z U, Ullah R S, Haroon M, Khan R U, Fahad S, Khan A, Nazir A, Usman M, Naveed K U. J. Mat. Chem. B, 2018, 6(23): 3831.

doi: 10.1039/C7TB03332J
[99]
Alexeev V L, Das S, Finegold D N, Asher S A. Clin. Chem., 2004, 50(12): 2353.

doi: 10.1373/clinchem.2004.039701
[100]
Ruan J, Chen C, Shen J, Zhao X, Qian S, Zhu Z. Polymers, 2017, 9(4): 125.

doi: 10.3390/polym9040125
[101]
Hong X, Peng Y, Bai J, Ning B, Liu Y, Zhou Z, Gao Z. Small, 2014, 10(7): 1308.

doi: 10.1002/smll.v10.7
[102]
Zeng Y, Wang J, Wang Z, Chen G, Yu J, Li S, Li Q, Li H, Wen D, Gu Z. Nano Today, 2020, 35: 100984.

doi: 10.1016/j.nantod.2020.100984
[103]
Feng X Q, Xu J, Liu Y X, Zhao W P. J. Mat. Chem. B, 2019, 7(22): 3576.

doi: 10.1039/C9TB00226J
[104]
Zhang P P, Zhu J C, Zhao B J, Xu S H, Wang L, Luo X L. Chin. J. Anal. Chem., 2022, 50(4): 100054.

doi: 10.1016/j.cjac.2022.100054
[105]
Chen Q, Wei Z, Wang S, Zhou J, Wu Z. Microchimica. Acta, 2021, 188(6): 210.

doi: 10.1007/s00604-021-04849-3
[106]
Jiang N, Butt H, Montelongo Y, Liu F, Afewerki S, Ying G L, Dai Q, Yun S H, Yetisen A K. Adv. Funct. Mater., 2018, 28(24): 1702715.

doi: 10.1002/adfm.v28.24
[107]
Cai J, Luo W, Pan J, Li G, Pu Y, Si L, Shi G, Shao Y, Ma H, Guan J. Adv. Sci., 2022, 9(9): 2105239.

doi: 10.1002/advs.v9.9
[108]
Munir S, Hussain S, Park S Y. ACS Appl. Mater. Interfaces, 2019, 11(41): 37434.

doi: 10.1021/acsami.9b10316
[109]
Miyagi K, Takano T, Teramoto Y. J. Appl. Polym. Sci., 2022, 139(41): e52984.

doi: 10.1002/app.v139.41
[1] Shiping Jin, Ying Sun, Xueqin Zhang. Oxygen Permeability of Polymer Hydrogel Materials [J]. Progress in Chemistry, 2023, 35(9): 1304-1312.
[2] Zhiyuan Xu, Guowei Gao, Yansheng Li, Qingwei Liao, Jingfang Hu, Xueji Zhang. Home Diagnosis of Myocardial Infarction: Aptamer-Based cTnI Sensing Technology [J]. Progress in Chemistry, 2023, 35(8): 1266-1274.
[3] Qimeng Ren, Qinglei Wang, Yinwen Li, Xuesheng Song, Xuehui Shangguan, Faqiang Li. High Voltage Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2023, 35(7): 1077-1096.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[6] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[7] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[8] Li Liqing, Zhong Xiumin, Zhang Lixu, Liu Kunming, Wang Quanbing, Ma Jie. Preparation of Double Network Hydrogels and their Mechanical Modification [J]. Progress in Chemistry, 2023, 35(11): 1674-1685.
[9] Chubin Zhao, Hailin Wang. Research Methods for Liquid-Liquid Phase Separation of Biological Macromolecules [J]. Progress in Chemistry, 2023, 35(10): 1486-1491.
[10] Wei Tang, Yan Bing, Xudong Liu, Hongji Jiang. Multifunctional Organic Luminescent Materials Based on Benzophenone Frameworks [J]. Progress in Chemistry, 2023, 35(10): 1461-1485.
[11] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[12] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[13] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[14] Liyuan Wang, Meng Zhang, Jing Wang, Ling Yuan, Lin Ren, Qingyu Gao. Bionic Locomotion of Self-oscillating gels [J]. Progress in Chemistry, 2022, 34(4): 824-836.
[15] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.