中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (1): 81-94 DOI: 10.7536/PC230511 Previous Articles   Next Articles

• Review •

Application of MOFs-Derived Metal Oxides in Catalytic Total Oxidation of VOCs

Tao Peng, Qianqian Chai, Chuanqiang Li(), Xuxu Zheng, Lingjuan Li   

  1. School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: lichuanqiang@cqjtu.edu.cn
  • Supported by:
    Chongqing Technical Innovation and Application Development Special Surface Project(cstc2020jscx-msxmX0071); Chongqing Technical Innovation and Application Development Special Surface Project(CSTB2022TIAD-GPX0033); Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202300709)
Richhtml ( 23 ) PDF ( 253 ) Cited
Export

EndNote

Ris

BibTeX

The emission of a significant amount of VOCs has resulted in severe impacts on both human health and the environment. Currently, the most effective method for treating VOCs is their total oxidation to carbon dioxide and water through metal oxide catalysis. To enhance the catalytic performance of metal oxides, various synthetic strategies have been developed, including morphology, defect, and doping engineering. However, these processes are cumbersome and require further improvements to enhance the catalytic performance. On the other hand, metal-organic frameworks (MOFs)-derived metal oxides have been extensively used to catalyze the complete oxidation of VOCs. This is because of their tunable morphology, large specific surface area, high defect concentration, and excellent doping dispersion. However, there is a lack of a comprehensive summary of the application of MOFs-derived metal oxides in the total oxidation of VOCs. Therefore, this paper reviews the synthesis conditions, doping methods, and pyrolysis conditions of MOFs from the control strategy of derived metal oxides. It also summarizes the regulation methods and the relationship between the physicochemical properties of derived metal oxides and the total oxidation performance of VOCs. Additionally, this paper discusses the future development and challenges of MOFs-derived metal oxides.

Contents

1 Introduction

2 Regulatory strategies of MOFs-derived metal oxides and their application in catalytic total oxidation of VOCs

2.1 Synthesis conditions

2.2 Doping methods

2.3 Pyrolysis conditions

3 Mechanism of catalytic VOCs total oxidation

4 Conclusion and outlook

Table 1 Summary of research on MOFs-derived MOs in VOCs in recent five years
Catalyst MOF pyrolysis conditions pollutant Concentration(ppm) WHSV(mL·gcat−1·h−1) T90(℃) ref
CeO2/Co3O4 CoCe-BDC Air, 350 ℃ Acetone 600 18 600 180 35
CeCoOx-MNS ZIF-67 Air, 450 ℃ Toluene 3000 30 000 249 44
CeO2-1 Ce-BTC Air, 450 ℃ o-xylene 500 48 000 198 52
Co3O4-R Co-MOF-74 Air, 350 ℃ o-xylene 100 120 000 270 37
Mn-100-AR-O MIL-101(Mn) O2 after Ar,
700 ℃
Toluene 1000 30 000 265 49
ZSA-1-Co3O4 ZSA-1 Air, 350 ℃ Toluene / 20 000 240 40
CeO2 Ce-MOF-808 Air, 250 ℃ Toluene 1000 30 000 278 41
Mn3O4-MOFs-74-300 Mn-MOF-74 Air, 300 ℃ Toluene 1000 20 000 218 50
CeCoOx-200 Ce[Co(CN)6]2·nH2O Air, 500 ℃ Toluene 3000 30 000 168 56
Co3O4-400 ZIF-67 Air, 350 ℃ Toluene 12000 21 000 259 43
CeO2-C Ce-BTC Air, 450 ℃ o-xylene 500 48 000 193 62
Co2Mn3 MnCo-BTC Air, 350 ℃ Propane 10000 120 000 255 45
M-Co2Cu1Ox CoCu-MOF-74 Air, 400 ℃ Toluene 1000 30 000 220 66
MOF-Mn1Co1 Mn3[Co(CN)6]2·nH2O Air, 450 ℃ Toluene 500 96 000 226 75
MnOx-CeO2-MOF Ce/Mn-MOF-74 Air, 600 ℃ Toluene 1000 60 000 220 78
CuMn2Ox CuMn -BTC N2,350 ℃&500 ℃ Acetone 1019 18 000 144 80
MnOx-CeO2-s Mn/Ce-BTC Air, 600 ℃ ethylacetate 500 60 000 205 83
CuO/Co3O4 Cu/ZIF-67 Air, 500 ℃ Toluene 1000 20 000 229 84
M-Co1Mn1Ox Mn/ZSA-1 Air, 500 ℃ Toluene - 20 000 192 85
15Mn/Cr2O3-M Cr-MIL-101 Air, 500 ℃ Toluene 1000 60 000 268 86
10%CeO2-MnOx Mn-BTC Air, 300 ℃ Toluene 1000 48 000 275 89
M-Co1Cu1Ox Mn/ZSA-1 Air, 350 ℃ Toluene 1000 20 000 208 88
MnOx/Co3O4-4 h Mn/ZIF-67 Air, 350 ℃ chlorobenzene 1000 60 000 334 90
MnOx/Co3O4-10 Mn/ZIF-67 O2 after N2, 500 ℃ Toluene 1000 120 000 242 70
CoMn6 Mn/ZIF-67 Air, 350 ℃ Toluene 1000 60 000 219 92
MOF-CMO/400 Mn3[Co(CN)6]2·nH2O Air, 400 ℃ Toluene 1000 20 000 209 72
M-Co3O4-350 ZSA-1 Air, 350 ℃ Toluene 1000 20 000 239 95
Co3O4-350 Co-BTC Air, 350 ℃ Propane 10000 60 000 275 96
CeO2-MOF/ 350 Ce-BTC Air, 350 ℃ Toluene 1000 12 000 260 97
1Mn1Ce-300 MnCe-BTC O2 after Ar,
300 ℃
Toluene 1000 30 000 244 103
HW-MnxCo3-xO4 ZIF-67 Air, 350 ℃ Toluene 3000 30 000 188 104
MnOx-NA Mn-BDC O2 after N2, 350 ℃ Acetone 600 56 000 167 105
MnOx@ZrO2-NA MOF-808 O2 after N2, 300 ℃ Toluene 1000 60 000 260 106
MnOx-700 Mn-MOF-74 Air, 700 ℃ chlorobenzene 50 12 000 225 109
3Mn2Ce Mn/Ce-BTC O2 after Ar,
300 ℃
Toluene 1000 30 000 236 117
Fig. 1 (a) Morphology of Co3O4-R and Co3O4-S and catalytic oxidation activity on o-xylene[37]; (b) Morphology of ZSA-1-Co3O4, MOF-74-Co3O4 and ZIF-67-Co3O4 and complete oxidation activity of toluene[40]; (c) XRD patterns of Ce-MOF-808, Ce-BTC and Ce-UiO-66[41]; (d) Mechanism of DMF/ water control on the size and morphology of Co-MOF-74[42]; (e) Synthesis of ZIF-67 at 1.7 μm, 800 nm and 400 nm[43]; (f) Synthesis steps of cubic, reticular nanosheet and rod-like Co-MOFs[44]; (g) Schematic diagram of preparation of MoFs-derived MnCo dioxides by ball milling[45]
Fig. 2 (a) Co3O4/CeO2 was prepared by CoCeOx derived from CoCeBDC and ordinary load[68]; (b) CoCeBDC derived heterovalent substituted CoCeOx[67]; (c) Doping sites of MOFs[33]; (d) Preparation of hollow NiOx/Co3O4 by doping ZIF-67 with nickel nitrate[69]; (e) The preparation of MnOx/Co3O4 by synergistic pyrolysis-oxidation-adsorption[70]; (f) CeCoOx was prepared by encapsulation of Co-MOFs into ordered mesoporous CeO2[71]; (g) Preparation method of hollow CoMn2O4[72]
Fig. 3 (a) Graphical models of pyrolysis Ce-BTC at different temperatures[99]; (b) Morphology diagram of ZIF-67 under different pyrolysis conditions[104]; (c) Two-stage preparation of MnOx-NA[105]; (d) A two-stage process for preparing MnOx@ZrO2-NA[106]
Fig. 4 (a, b) MvK model reaction steps; (c) LH model reaction steps
[1]
Zhang Z X, Jiang Z, Shangguan W F. Catal. Today, 2016, 264: 270.

doi: 10.1016/j.cattod.2015.10.040
[2]
Zheng Y F, Fu K X, Yu Z H, Su Y, Han R, Liu Q L. J. Mater. Chem. A, 2022, 10(27): 14171.
[3]
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z P. Chem. Rev., 2019, 119(7): 4471.

doi: 10.1021/acs.chemrev.8b00408
[4]
Zhang S H, You J P, Kennes C, Cheng Z W, Ye J X, Chen D Z, Chen J M, Wang L D. Chem. Eng. J., 2018, 334: 2625.

doi: 10.1016/j.cej.2017.11.014
[5]
Kamal M S, Razzak S A, Hossain M M. Atmos. Environ., 2016, 140: 117.

doi: 10.1016/j.atmosenv.2016.05.031
[6]
Feng C, Xiong G, Jiang F, Gao Q, Chen C, Pan Y, Fei Z, Li Y, Lu Y, Liu C. Sep. Purif. Technol., 2022, 284: 120269.

doi: 10.1016/j.seppur.2021.120269
[7]
Almaie S, Vatanpour V, Rasoulifard M H, Koyuncu I. Chemosphere, 2022, 306: 135655.

doi: 10.1016/j.chemosphere.2022.135655
[8]
Li X Q, Zhang L, Yang Z Q, Wang P, Yan Y F, Ran J Y. Sep. Purif. Technol., 2020, 235: 116213.

doi: 10.1016/j.seppur.2019.116213
[9]
Zheng S J, Qian Y, Wang X B, Vujanović M, Zhang Y J, Ur Rahman Z, Yang P H, Duan F, Tan H Z, De Toni A, Li Y, Mikulćić H. Fuel, 2022, 315: 123149.

doi: 10.1016/j.fuel.2022.123149
[10]
Lelicińska-Serafin K, Rolewicz-Kalińska A, Manczarski P. Int. J. Environ. Res. Public Health, 2019, 16(17): 3009.
[11]
Xie L H, Liu X M, He T, Li J R. Chem, 2018, 4(8): 1911.

doi: 10.1016/j.chempr.2018.05.017
[12]
Yang R J, Guo Z J, Cai L X, Zhu R S, Fan Y Y, Zhang Y F, Han P P, Zhang W J, Zhu X G, Zhao Q T, Zhu Z Y, Chan C K, Zeng Z Y. Small, 2021, 17(50): 2103052.

doi: 10.1002/smll.v17.50
[13]
Min X, Guo M M, Liu L Z, Li L, Gu J N, Liang J X, Chen C, Li K, Jia J P, Sun T H. J. Hazard. Mater., 2021, 406: 124743.
[14]
Zhao Q, Zheng Y F, Song C F, Liu Q L, Ji N, Ma D G, Lu X B. Appl. Catal. B Environ., 2020, 265: 118552.

doi: 10.1016/j.apcatb.2019.118552
[15]
Lou B Z, Shakoor N, Adeel M, Zhang P, Huang L L, Zhao Y W, Zhao W C, Jiang Y Q, Rui Y K. J. Clean. Prod., 2022, 363: 132523.
[16]
Kim H S, Kim H J, Kim J H, Kim J H, Kang S H, Ryu J H, Park N K, Yun D S, Bae J W. Catalysts, 2022, 12(1): 63.

doi: 10.3390/catal12010063
[17]
Lu Y Q, Deng H, Pan T T, Wang L, Zhang C B, He H. Appl. Surf. Sci., 2022, 606: 154834.

doi: 10.1016/j.apsusc.2022.154834
[18]
Shen K, Gao B, Xia H Q, Deng W, Yan J R, Guo X H, Guo Y L, Wang X Y, Zhan W C, Dai Q G. Environ. Sci. Technol., 2022, 56(12): 8854.

doi: 10.1021/acs.est.2c00942
[19]
Guo Y L, Wen M C, Li G Y, An T C. Appl. Catal. B Environ., 2021, 281: 119447.

doi: 10.1016/j.apcatb.2020.119447
[20]
Wu X, Han R, Liu Q, Su Y, Lu S, Yang L, Song C, Ji N, Ma D, Lu X. Catal. Sci. Technol., 2021, 11(16): 5374.

doi: 10.1039/D1CY00478F
[21]
Huang H B, Xu Y, Feng Q Y, Leung D. Catal. Sci. \& Technol., 2015, 5: 2649.
[22]
Liu R, Wu H, Shi J H, Xu X M, Zhao D, Ng Y H, Zhang M L, Liu S J, Ding H. Catal. Sci. Technol., 2022, 12(23): 6945.

doi: 10.1039/D2CY01181F
[23]
Li H L, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402(6759): 276.

doi: 10.1038/46248
[24]
He T, Kong X J, Bian Z X, Zhang Y Z, Si G R, Xie L H, Wu X Q, Huang H L, Chang Z, Bu X H, Zaworotko M J, Nie Z R, Li J R. Nat. Mater., 2022, 21(6): 689.

doi: 10.1038/s41563-022-01237-x
[25]
Hussain I, Iqbal S, Hussain T, Chen Y T, Ahmad M, Javed M S, AlFantazi A, Zhang K L. J. Mater. Chem. A, 2021, 9(33): 17790.
[26]
Li Y Z, Wang G D, Ma L N, Hou L, Wang Y Y, Zhu Z H. ACS Appl. Mater. Interfaces, 2021, 13(3): 4102.

doi: 10.1021/acsami.0c21554
[27]
Li D D, Xu H Q, Jiao L, Jiang H L. EnergyChem, 2019, 1(1): 100005.

doi: 10.1016/j.enchem.2019.100005
[28]
Hu H, Guan B Y, Xia B Y, David Lou X W. J. Am. Chem. Soc., 2015, 137(16): 5590.

doi: 10.1021/jacs.5b02465
[29]
Cong Y Q, Chen X, Wang W X, Ye L J, Zhang Y, Lv S W. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 655: 130266.

doi: 10.1016/j.colsurfa.2022.130266
[30]
Li C Q, Liu X, Yang X Y, Peng T, Li Y Q, Chen M W, Lin C C, Jiang J, Su Z Y, Kong W J, Wang Y. Ceram. Int., 2022, 48(13): 18460.

doi: 10.1016/j.ceramint.2022.03.115
[31]
Zhou W X, Tang Y J, Zhang X Y, Zhang S T, Xue H G, Pang H. Coord. Chem. Rev., 2023, 477: 214949.

doi: 10.1016/j.ccr.2022.214949
[32]
Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z B, Zou R Q. Angewandte Chemie Int. Ed., 2021, 60(20): 11048.

doi: 10.1002/anie.v60.20
[33]
De Villenoisy T, Zheng X R, Wong V, Mofarah S S, Arandiyan H, Yamauchi Y, Koshy P, Sorrell C C. Adv. Mater., 2023, 35(24): 2370174.

doi: 10.1002/adma.v35.24
[34]
Reddy R K, Lin J N, Chen Y Y, Zeng C, Lin X M, Cai Y P, Su C. Coord. Chem. Rev., 2020, 420: 213434.

doi: 10.1016/j.ccr.2020.213434
[35]
Zheng Y F, Zhao Q, Shan C P, Lu S C, Su Y, Han R, Song C F, Ji N, Ma D G, Liu Q L. ACS Appl. Mater. Interfaces, 2020, 12(25): 28139.

doi: 10.1021/acsami.0c04904
[36]
Wang L, Yin G Y, Yang Y Q, Zhang X D. React. Kinetics Mech. Catal., 2019, 128(1): 193.
[37]
Ma Y, Wang L, Ma J Z, Wang H H, Zhang C B, Deng H, He H. ACS Catal., 2021, 11(11): 6614.

doi: 10.1021/acscatal.1c01116
[38]
Jian Y F, Tian M J, He C, Xiong J C, Jiang Z Y, Jin H, Zheng L R, Albilali R, Shi J W. Appl. Catal. B Environ., 2021, 283: 119657.

doi: 10.1016/j.apcatb.2020.119657
[39]
Xie Y J, Yu Y Y, Gong X Q, Guo Y, Guo Y L, Wang Y Q, Lu G Z. CrystEngComm, 2015, 17(15): 3005.

doi: 10.1039/C5CE00058K
[40]
Lei J, Wang S, Li J P. Chem. Eng. Sci., 2020, 220: 115654.

doi: 10.1016/j.ces.2020.115654
[41]
Sun W J, Li X M, Sun C, Huang Z, Xu H L, Shen W. Catalysts, 2019, 9(8): 682.

doi: 10.3390/catal9080682
[42]
Huang C, Gu X Y, Su X Y, Xu Z C, Liu R, Zhu H J. J. Solid State Chem., 2020, 289: 121497.
[43]
Zhao J H, Tang Z C, Dong F, Zhang J Y. Mol. Catal., 2019, 463: 77.
[44]
Dong F, Han W G, Guo Y, Han W L, Tang Z C. Chem. Eng. J., 2021, 405: 126948.

doi: 10.1016/j.cej.2020.126948
[45]
Li C Q, Liu X, Peng T, Zhang T, Lin C C, Zhang Y Y, Chai Q Q, Qiu W G, Song L Y. Appl. Surf. Sci., 2023, 619: 156698.

doi: 10.1016/j.apsusc.2023.156698
[46]
Lu S C, Han R, Wang H, Song C F, Ji N, Lu X B, Ma D G, Liu Q L. Chem. Eng. J., 2022, 448: 137629.

doi: 10.1016/j.cej.2022.137629
[47]
Feng C, Chen C, Xiong G Y, Yang D, Wang Z, Pan Y, Fei Z Y, Lu Y K, Liu Y Q, Zhang R D, Li X B. Appl. Catal. B Environ., 2023, 328: 122528.

doi: 10.1016/j.apcatb.2023.122528
[48]
Ma Y, Wang L, Ma J Z, Liu F D, Einaga H, He H. Environ. Sci. Technol., 2022, 56(13): 9751.

doi: 10.1021/acs.est.2c02450
[49]
Zhang X D, Lv X T, Bi F K, Lu G, Wang Y X. Mol. Catal., 2020, 482: 110701.
[50]
Chen J J, Bai B B, Lei J, Wang P, Wang S, Li J P. Chem. Eng. Sci., 2022, 263: 118065.

doi: 10.1016/j.ces.2022.118065
[51]
Marshall C R, Staudhammer S A, Brozek C K. Chem. Sci., 2019, 10(41): 9396.

doi: 10.1039/C9SC03802G
[52]
Mei J, Shen Y, Wang Q L, Shen Y, Li W, Zhao J K, Chen J R, Zhang S H. ACS Appl. Mater. Interfaces, 2022, 14(31): 35694.

doi: 10.1021/acsami.2c08418
[53]
Niu Y D, Yuan Y, Zhang Q, Chang F F, Yang L, Chen Z W, Bai Z Y. Nano Energy, 2021, 82: 105699.

doi: 10.1016/j.nanoen.2020.105699
[54]
Jang J S, Koo W T, Kim D H, Kim I D. ACS Cent. Sci., 2018, 4(7): 929.

doi: 10.1021/acscentsci.8b00359
[55]
Zhai C B, Zhang H P, Du L Y, Wang D X, Xing D J, Zhang M Z. CrystEngComm, 2020, 22(7): 1286.

doi: 10.1039/C9CE01807G
[56]
Han W L, Zhao H J, Dong F, Tang Z C. Nanoscale, 2018, 10(45): 21307.

doi: 10.1039/C8NR07882C
[57]
Zhang B X, Zhang J L, Liu C C, Sang X X, Peng L, Ma X, Wu T B, Han B X, Yang G Y. RSC Adv., 2015, 5(47): 37691.

doi: 10.1039/C5RA02440D
[58]
Cheng X Q, Zhang A F, Hou K K, Liu M, Wang Y X, Song C S, Zhang G L, Guo X W. Dalton Trans., 2013, 42(37): 13698.

doi: 10.1039/c3dt51322j
[59]
Wang S M, Liu H R, Zheng S T, Lan H L, Yang Q Y, Zheng Y Z. Sep. Purif. Technol., 2023, 304: 122378.

doi: 10.1016/j.seppur.2022.122378
[60]
Guo H L, Zhu Y Z, Wang S, Su S Q, Zhou L, Zhang H J. Chem. Mater., 2012, 24(3): 444.

doi: 10.1021/cm202593h
[61]
Sun D, Tang Y G, Ye D L, Yan J, Zhou H S, Wang H Y. ACS Appl. Mater. Interfaces, 2017, 9(6): 5254.

doi: 10.1021/acsami.6b14801
[62]
Mei J, Zhang S H, Pan G J, Cheng Z W, Chen J R, Zhao J K. J. Environ. Chem. Eng., 2022, 10(6): 108743.
[63]
Babu R, Roshan R, Kathalikkattil A C, Kim D W, Park D W. ACS Appl. Mater. Interfaces, 2016, 8(49): 33723.

doi: 10.1021/acsami.6b12458
[64]
Gu W H, Lv J, Quan B, Liang X H, Zhang B S, Ji G B. J. Alloys Compd., 2019, 806: 983.
[65]
Yue C G, Lin Y H, Sang J T, Li Z Y, Zhang P B, Fan M M, Leng Y, Jiang P P, Haryono A. Mater. Today Commun., 2022, 31: 103270.
[66]
Sun N, Zhang Y F, Wang L Y, Cao Z Z, Sun J M. J. Alloys Compd., 2022, 928: 167105.
[67]
Li Y X, Han W, Wang R X, Weng L T, Serrano-Lotina A, Bañares M A, Wang Q Y, Yeung K L. Appl. Catal. B Environ., 2020, 275: 119121.

doi: 10.1016/j.apcatb.2020.119121
[68]
Wang Q Y, Li Z M, Bañares M A, Weng L T, Gu Q F, Price J, Han W, Yeung K L. Small, 2019, 15(42): 1903525.

doi: 10.1002/smll.v15.42
[69]
Chen X, Li J J, Chen X, Cai S C, Yu E Q, Chen J, Jia H P. ACS Appl. Nano Mater., 2018, 1(6): 2971.

doi: 10.1021/acsanm.8b00587
[70]
Han D W, Ma X Y, Yang X Q, Xiao M L, Sun H, Ma L J, Yu X L, Ge M F. J. Colloid Interface Sci., 2021, 603: 695.
[71]
Wen M, Dong F, Tang Z C, Zhang J Y. Mol. Catal., 2022, 519: 112149.
[72]
Luo L, Huang R, Hu W, Yu Z S, Tang Z X, Chen L Q, Zhang Y H, Zhang D, Xiao P. ACS Appl. Nano Mater., 2022, 5(6): 8232.

doi: 10.1021/acsanm.2c01329
[73]
Hu Z, Tang Z Y, Zhang T, Yong X, Mi R L, Li D, Yang X, Yang R T. Ind. Eng. Chem. Res., 2022, 61(14): 4803.

doi: 10.1021/acs.iecr.1c05077
[74]
Lu T L, Su F C, Zhao Q, Li J X, Zhang C S, Zhang R Q, Liu P P. Sep. Purif. Technol., 2022, 296: 121436.

doi: 10.1016/j.seppur.2022.121436
[75]
Luo Y J, Zheng Y B, Zuo J C, Feng X S, Wang X Y, Zhang T H, Zhang K, Jiang L L. J. Hazard. Mater., 2018, 349: 119.
[76]
Tu S, Chen Y, Zhang X Y, Yao J Z, Wu Y, Wu H X, Zhang J Y, Wang J L, Mu B, Li Z, Xia Q B. Appl. Catal. A Gen., 2021, 611: 117975.

doi: 10.1016/j.apcata.2020.117975
[77]
Guo Z Y, Song L H, Xu T T, Gao D W, Li C C, Hu X, Chen G Z. Mater. Chem. Phys., 2019, 226: 338.

doi: 10.1016/j.matchemphys.2019.01.057
[78]
Sun H, Yu X L, Ma X Y, Yang X Q, Lin M Y, Ge M F. Catal. Today, 2020, 355: 580.

doi: 10.1016/j.cattod.2019.05.062
[79]
Zhang X D, Zhao Z Y, Zhao S H, Xiang S, Gao W K, Wang L, Xu J C, Wang Y X. J. Catal., 2022, 415: 218.
[80]
Wang L, Sun Y G, Zhu Y B, Zhang J, Ding J, Gao J D, Ji W X, Li Y Y, Wang L Q, Ma Y L. J. Colloid Interface Sci., 2022, 622: 577.
[81]
Hu W, Huang J C, Xu J Y, Cheng S, Lyu Y, Xie D, Wang Z Q. Fuel Process. Technol., 2022, 236: 107424.

doi: 10.1016/j.fuproc.2022.107424
[82]
Liu W X, Yin R L, Xu X L, Zhang L, Shi W H, Cao X H. Adv. Sci., 2019, 6(12): 1802373.

doi: 10.1002/advs.v6.12
[83]
Jiang Y W, Gao J H, Zhang Q, Liu Z Y, Fu M L, Wu J L, Hu Y, Ye D Q. Chem. Eng. J., 2019, 371: 78.

doi: 10.1016/j.cej.2019.03.233
[84]
Xu W J, Chen X, Chen J, Jia H P. J. Hazard. Mater., 2021, 403: 123869.
[85]
Lei J, Wang P, Wang S, Li J P, Xu Y P, Li S Y. Chin. J. Chem. Eng., 2022, 52: 1.

doi: 10.1016/j.cjche.2021.11.027
[86]
Chen X, Chen X, Cai S C, Yu E Q, Chen J, Jia H P. Appl. Surf. Sci., 2019, 475: 312.

doi: 10.1016/j.apsusc.2018.12.277
[87]
Wang L D, Li Y L, Liu J, Tian Z X, Jing Y. Sep. Purif. Technol., 2021, 277: 119505.

doi: 10.1016/j.seppur.2021.119505
[88]
Lei J, Wang S, Li J P, Xu Y P, Li S Y. Chem. Eng. Sci., 2022, 251: 117436.

doi: 10.1016/j.ces.2022.117436
[89]
Zhang Q, Jiang Y W, Gao J H, Fu M L, Zou S B, Li Y X, Ye D Q. Catalysts, 2020, 10(6): 681.

doi: 10.3390/catal10060681
[90]
Hu Z Y, Chen J, Yan D X, Li Y, Jia H P, Lu C Z. Appl. Surf. Sci., 2021, 551: 149453.

doi: 10.1016/j.apsusc.2021.149453
[91]
Mao J W, Meng Q, Xu Z H, Xu L S, Fan Z, Zhang G L. Chem. Commun., 2022, 58(98): 13600.

doi: 10.1039/D2CC04954F
[92]
Zhao J G, Wang P F, Liu C L, Zhao Q, Wang J L, Shi L, Xu G W, Abudula A, Guan G Q. J. Colloid Interface Sci., 2023, 629: 706.
[93]
Wang X, Zhao S N, Zhang Y B, Wang Z, Feng J, Song S Y, Zhang H J. Chem. Sci., 2016, 7(2): 1109.

doi: 10.1039/C5SC03430B
[94]
Yang P, Song X L, Jia C C, Chen H S. J. Ind. Eng. Chem., 2018, 62: 250.

doi: 10.1016/j.jiec.2018.01.002
[95]
Lei J, Wang S, Li J P. Ind. Eng. Chem. Res., 2020, 59(13): 5583.

doi: 10.1021/acs.iecr.9b06243
[96]
Li C Q, Liu X, Wang H B, He Y, Song L Y, Deng Y D, Cai S C, Li S M. Adv. Powder Technol., 2022, 33(1): 103373.

doi: 10.1016/j.apt.2021.11.025
[97]
Chen X, Chen X, Yu E Q, Cai S C, Jia H P, Chen J, Liang P. Chem. Eng. J., 2018, 344: 469.

doi: 10.1016/j.cej.2018.03.091
[98]
Zhang X D, Hou F L, Yang Y, Wang Y X, Liu N, Chen D, Yang Y Q. Appl. Surf. Sci., 2017, 423: 771.

doi: 10.1016/j.apsusc.2017.06.235
[99]
Zhang X D, Hou F L, Li H X, Yang Y, Wang Y X, Liu N, Yang Y Q. Microporous Mesoporous Mater., 2018, 259: 211.

doi: 10.1016/j.micromeso.2017.10.019
[100]
Cui L F, Zhao D, Yang Y, Wang Y X, Zhang X D. J. Solid State Chem., 2017, 247: 168.
[101]
Zhang X D, Li H X, Hou F L, Yang Y, Dong H, Liu N, Wang Y X, Cui L F. Appl. Surf. Sci., 2017, 411: 27.

doi: 10.1016/j.apsusc.2017.03.179
[102]
Zheng J, Wang Z, Chen Z, Zuo S F. J. Rare Earths, 2021, 39(7): 790.
[103]
Zhang X D, Xiang S, Du Q X, Bi F K, Xie K L, Wang L. Mol. Catal., 2022, 522: 112226.
[104]
Zhao J H, Han W L, Tang Z C, Zhang J Y. Cryst. Growth Des., 2019, 19(11): 6207.

doi: 10.1021/acs.cgd.9b00677
[105]
Zheng Y F, Liu Q L, Shan C P, Su Y, Fu K X, Lu S C, Han R, Song C F, Ji N, Ma D G. Environ. Sci. Technol., 2021, 55(8): 5403.

doi: 10.1021/acs.est.0c08335
[106]
Li W W, Gao G Q, Wang L L, Xu H M, Huang W J, Yan N Q, Qu Z. Fuel, 2022, 320: 123983.

doi: 10.1016/j.fuel.2022.123983
[107]
Li Z J, Ma C, Qi M, Li Y L, Qu Y C, Zhang Y, Zhou L L, Yun J. Mol. Catal., 2023, 535: 112857.
[108]
Yang Y Q, Dong H, Wang Y, He C, Wang Y X, Zhang X D. J. Solid State Chem., 2018, 258: 582.
[109]
Jiang T T, Wang X, Chen J Z, Zhang J J, Mai Y L. ChemistrySelect, 2022, 7(29): e202201409.

doi: 10.1002/slct.v7.29
[110]
Yang S, Qi Z T, Wen Y C, Wang X X, Zhang S H, Li W, Li S J. Chem. Eng. J., 2023, 452: 139657.

doi: 10.1016/j.cej.2022.139657
[111]
Jiang S L, Li C H, Muhammad Y, Tang Y, Wang R M, Li J J, Li J, Zhao Z X, Zhao Z X,. Appl. Catal. B Environ., 2023, 328: 122509.

doi: 10.1016/j.apcatb.2023.122509
[112]
Dong Y L, Zhao J Y, Zhang J Y, Chen Y, Yang X X, Song W N, Wei L G, Li W. Chem. Eng. J., 2020, 388: 124244.

doi: 10.1016/j.cej.2020.124244
[113]
Li R Z, Zhang L, Zhu S M, Fu S Y, Dong X P, Ida S, Zhang L X, Guo L M. Appl. Catal. A Gen., 2020, 602: 117715.

doi: 10.1016/j.apcata.2020.117715
[114]
Liu P, Liao Y X, Li J J, Chen L W, Fu M L, Wu P Q, Zhu R L, Liang X L, Wu T L, Ye D Q. J. Colloid Interface Sci., 2021, 594: 713.
[115]
Zhang Z R, Hu G T, Zhao C C, Wei X L, Dou B J, Liang W J, Bin F. Fuel, 2023, 341: 127760.

doi: 10.1016/j.fuel.2023.127760
[116]
Feng C, Jiang F, Xiong G Y, Chen C, Wang Z, Pan Y, Fei Z Y, Lu Y K, Li X B, Zhang R D, Liu Y Q. Chem. Eng. J., 2023, 451: 138868.

doi: 10.1016/j.cej.2022.138868
[117]
Zhang X D, Bi F K, Zhu Z Q, Yang Y, Zhao S H, Chen J F, Lv X T, Wang Y X, Xu J C, Liu N. Appl. Catal. B Environ., 2021, 297: 120393.

doi: 10.1016/j.apcatb.2021.120393
[1] Ziyu Pan, Haodong Ji. Controlled Synthesis of Silver Nanomaterials and Their Environmental Applications [J]. Progress in Chemistry, 2023, 35(8): 1229-1257.
[2] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[3] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[4] Jin Weitao, Yang Ting, Jia Jimei, Zhou Xiaofei. Nanomaterials-Mediated Autophagy-Based Cancer Treatment [J]. Progress in Chemistry, 2023, 35(11): 1655-1673.
[5] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[6] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[7] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[8] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[9] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[10] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[11] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[12] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[13] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[14] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[15] Shicheng Jin, Shuang Yan. Nanostructure Construction and Sensing Mechanism of Metal Oxides for Room Temperature Gas Sensing [J]. Progress in Chemistry, 2021, 33(12): 2348-2361.