中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (10): 1415-1437 DOI: 10.7536/PC230510   Next Articles

• Review •

Millimeter-Sized Nanocomposites for Advanced Water Treatment: Preparation, Synergistic Effects and Applications

Wanyi Fu1, Yuhang Li1, Zhichao Yang1, Yanyang Zhang1,2, Xiaolin Zhang1,2, Ziyao Liu1, Bingcai Pan1,2,*()   

  1. 1 State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University,Nanjing 210023, China
    2 Research Center for Environmental Nanotechnology (RCENT), Nanjing University,Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: bcpan@nju.edu.cn
  • Supported by:
    National Key R&D Program(2022YFA1205601); National Key R&D Program(2022YFA1205602); National Natural Science Foundation of China(21925602); National Natural Science Foundation of China(22236003)
Richhtml ( 127 ) PDF ( 956 ) Cited
Export

EndNote

Ris

BibTeX

Nanomaterial features a high surface area-to-volume ratio and strong surface effects, offering excellent performance in water treatment and broad application prospects. Incorporating nanoparticles into millimeter-scale hosts to prepare millimeter-sized nanocomposite materials can couple the high reactivity of nanoparticles with the easy operability of millimeter-scale hosts. This is an important technical approach to overcome the engineering application bottlenecks of nanomaterials, such as their tendency to agglomerate, low stability, potential environmental risks, and difficult separation. This review summarizes the preparation methods, structural characteristics, and adsorptive and catalytic oxidative removal of pollutants from aqueous systems by millimeter-sized nanocomposites. It elaborates on the confinement effects from the perspectives of confined growth of nanoparticles, confined adsorption properties, and confined catalytic oxidation properties, as well as the synergistic purification effect between the hosts and nanoparticles. Finally, the scientific issues and practical challenges that urgently need to be addressed in the development of millimeter-sized nanocomposites are discussed. We believe this review will provide theoretical guidance and technical references for promoting the practical applications of nanomaterials.

Contents

1 Introduction

2 Common hosts and preparation methods of millimeter-sized nanocomposites

2.1 Polymeric hosts

2.2 Carbon-based hosts

2.3 Natural mineral based hosts

2.4 Ceramic-based hosts

3 Confinement effects and synergistic purification effects of millimeter-nanometer structure

3.1 Confined growth of nanoparticles in millimeter-sized hosts

3.2 Confined adsorption and regeneration of nanoparticles inside millimeter-sized hosts

3.3 Confined catalytic oxidation of nanoparticles inside millimeter-sized hosts

4 Practical applications of millimeter-sized nanocomposites in water treatment

4.1 Applications in adsorption

4.2 Applications in catalytic degradation

5 Conclusions and perspectives

5.1 Research gaps in scientific issues regarding nanoconfinement effects

5.2 Challenges to be addressed for practical applications of nanocomposite materials

Fig.1 (a) Categories of millimeter-scale host materials and (b~g) typical preparation methods for millimeter-sized nanocomposites[1,9,13,22,30,40]
Table 1 Studies on millimeter-sized nanocomposites with polymers as hosts applied in water decontamination
Millimeter-scale hosts Appearance
size of
hosts (mm)
Embedded
nanoparticles
Size of
nano-
particles
(nm)
Preparation methods Target pollutants Removal mechanism Adsorption capacity (mg/g) Removal efficiency Treated water matrix Experimental scale Operation duration ref
Macroporous ion exchange resins
D201a 0.7~0.9 HZO N.A.b Impregnation-precipitation Phosphate Adsorption 21.3 N.A Effluent from
municipal WWTPe
Fixed-bed column 1800 BV 2
D201 0.6~0.7 HZO 20~40 Impregnation-precipitation As(V) Adsorption 70.53 N.A. Acidic mining effluent Fixed-bed column 2900 BV 3
D201 0.4~1.0 HLO 3.56~
67.23
Impregnation-precipitation Phosphate Adsorption N.A. 91.23% River water Pilot-scale fixed-bed 8 months,
10 m3/d
5
D201 0.9~1.1 nZVI 2~11 Impregnation-precipitation Cu(Ⅱ)-
EDTA
Adsorption N.A. 88.3% Synthetic solution Fixed-bed column 500 BV 6
D201 0.4~0.8 HFO N.A. Impregnation-precipitation Selenite Adsorption ~37 N.A. Simulated wastewater Fixed-bed column ~1200 BV 107
D201 0.6~1.0 HFO N.A. Iron exchange-
precipitation
Phosphate Adsorption 17.8 N.A. Industrial effluent from a pesticide plant Fixed-bed column ~930 BV 10
D201 N.A. Li/Al LDHsc 5~20 Iron exchange-
precipitation
Fluoride Adsorption 32.6 N.A. Fluoride contaminated groundwater Fixed-bed column ~155 BV 84
D201 0.7~0.9 CeO2 2.5~4.2 Iron exchange-
precipitation
As(Ⅲ) Oxidation-adsorption 9.96 99.6% Simulated wastewater Fixed-bed column ~6500 BV 108
D201 0.6~0.8 nZVI 10~30 Iron exchange-reduction Se(Ⅵ) Adsorption N.A. >99% Simulated wastewater Fixed-bed column ~1240 BV 109
D201 (chloride type) 0.6~1.0 HFO 12.3 Iron exchange-
precipitation
Phosphate Adsorption N.A. <0.5 mg/L Biochemical effluent
from municipal WWTP
Field fixed-bed 3500~4000 BV 79
Cation exchanger D001 ~1 HFO N.A. Impregnation-precipitation Cu(Ⅱ)-
citrate
Adsorption/
Oxidation
N.A. 81.6% Simulated wastewater Fixed-bed column 1300 BV 110
Strongly basic anion
exchanger HAIX
0.5~0.7 HFO N.A. Iron exchange-
precipitation (commercial ArsenXnp)
As Adsorption N.A. <50 μg/L Arsenic well water Field fixed-bed 29 000 BV 7
Strongly basic anion
exchanger HAIX
0.3~1.2 HFO 3~5 Iron exchange-
precipitation (commercial
ArsenXnp)
As(V) Adsorption N.A. <10 μg/L Arsenic drinking water Field fixed-bed 91~120 days 86
Anion exchanger IRA-900 N.A. HFO N.A. Iron exchange-
precipitation
Phosphate Adsorption N.A. <10 μg/L Secondary effluent
from municipal WWTP
Fixed-bed column 1500 BV 111
Anion exchanger
DOWEXTM M4195
0.3~0.8 HFO N.A. Impregnation-
precipitation
Phosphate Adsorption N.A. <10 μg/L Simulated wastewater Fixed-bed column ~320 BV 112
Cross-linked ion exchange resins
Highly cross-linked
anion exchanger of
polystyrene matrix
0.6~0.7 HZO N.A. Impregnation-precipitation Fluoride Adsorption 20.9 <1.5 mg/L Simulated fluoride-
containing groundwater
Fixed-bed column ~80 BV 82
Cross-linked anion
exchanger
0.45~
0.55
HFO 11.6 Impregnation-precipitation As(V) Adsorption 31.6 <10 μg/L Simulated wastewater Fixed-bed column 2950 BV 12
Strongly basic anion
exchanger of poly-
styrene matrix
0.7~1.0 HMO 5.0~7.0 Impregnation-precipitation Phosphate Adsorption N.A. <0.5 mg/L Simulated wastewater Fixed-bed column 460 BV 54
Gel type ion exchange resins
Gel anion exchanger IRA-900 N.A. HFO N.A. Swelling-precipitation As(V) Adsorption N.A. >90% Simulated wastewater Fixed-bed column 10,000 BV 64
Gel cation exchanger C-100 0.3~0.5 HFO 20~100 Coprecipitation Pb(Ⅱ) Adsorption N.A. <0.2 mg/L Lead-acid battery
wastewater
Field fixed-bed 6500 BV 88
Gel strongly basic anion exchanger 201 × 4 N.A. HFO N.A. Iron exchange-
precipitation
As(V) Adsorption N.A. <10 μg/L Simulated wastewater Fixed-bed column 3900 BV 22
Synthetic polymers
Polystyrene bead 2 FeOOH 2.0~7.3 Flash freezing-in situ growth As(V) Adsorption 140~190 N.A. Single contaminant
solution
Laboratory beaker N.A. 13
Polystyrene bead 2 α-Fe2O3 3 Flash freezing-in situ growth As(V) Adsorption 32.0 <10 μg/L Simulated wastewater Fixed-bed column ~2900 BV 55
PDMS sponged 9 TiO2-Au 3~15 Sugar-template method RhB Photocatalysis N.A. ~96% in
3 h
Single contaminant
solution
Laboratory beaker N.A. 113
Polyurethane sponge N.A. Iron oxide N.A. Hydrothermal growth
method
As(Ⅲ),
As(V)
Adsorption As(Ⅲ): 4.2
As(V): 4.6
<50 μg/L Simulated wastewater Fixed-bed column As(Ⅲ): 123 BV
As(V): 144 BV
23
Natural polymers
Chitosan N.A. Iron oxide N.A. Impregnation-deposition Phosphate Adsorption N.A. 52.3% Stream water Pilot-scale adsorption tower 33 days 81
Bead cellulose 0.3~0.9 Fe(OH)3 200~300 Impregnation-deposition As(Ⅲ),
As(V)
Adsorption As(Ⅲ): 99.6
As(V): 33.2
<10 μg/L Simulated fluoride-
containing groundwater
Fixed-bed column As(Ⅲ): 2200 BV
As(V): 5000 BV
24
Table 2 Studies on millimeter-sized nanocomposites with carbon-based materials and natural minerals as hosts applied in water decontamination
Millimeter-scale hosts Appearance size of hosts (mm) Nanoparticles Size of na-
noparticles (nm)
Preparation methods Target pollutants Removal mecha-nism Adsorption capacity (mg/g) Removal efficiency Treated water matrix Experimental scale Operation duration ref
Carbon-based material
Activated carbon 0.25~0.5 HFO 2 Impregnation-calcination As(V) Adsorption 5 N.A.a Single contaminant solution Laboratory conical flask N.A. 28
Straw biochar 5~10 Ce 2~5 Impregnation-precipitation- pyrolysis Phosphate Adsorption 77.7 N.A. Single contaminant solution Laboratory batch
adsorption experiments
N.A. 114
Corncob biochar N.A. FeNi 880 Carbonization-activation RhB Photo-Fenton catalysis N.A. 97% in
90 min
Single contaminant solution Laboratory photo-reactor N.A. 30
Biochar aerogel N.A. nZVI 50~100 Impregnation-Pyrolysis
reduction
U (Ⅵ) Adsorption-reduction 720.8 90.1% in
80 min
Single contaminant solution Laboratory conical flask N.A. 31
Coffee ground
biochar
N.A. Pd 2~11 Impregnation-calcination 4-nitrophenol and meth-
ylene blue
Catalytic reduction N.A. N.A. Single contaminant solution Laboratory beaker N.A. 115
Natural minerals
Zeolite N.A. nZVI 37~110 Impregnation-reduction As(V) Adsorption 47.3 59% in
180 min
Single contaminant solution Laboratory batch
adsorption experiments
N.A. 116
Zeolite 0.8~1.2 HAlO N.A. Impregnation-ion exchange Phosphate Adsorption 7.0 N.A. Simulated wastewater Fixed-bed column 137 BV 117
Zeolite N.A. La N.A. Hydrothermal method Phosphate Adsorption N.A. >95% Primary and secondary
effluent from wastewater
treatment plant
Laboratory batch
adsorption experiments
N.A. 118
Zeolite 0.18~0.25 Mg-Al-La ternary hy-droxides 82.1 Coprecipitation Phosphate Adsorption 80.8 <0.5 mg/L Single contaminant solution Fixed-bed column ~4800
BV
119
Diatomite N.A. HFO N.A. Impregnation-calcination As Adsorption 20.5 < 50 μg/L Groundwater containing high
concentrations of arsenic
Fixed-bed column 937 BV, 44 d 120
Diatomite N.A. Magnetite 15 Hydrosol method Cr(Ⅵ) Adsorption 69.2 N.A. Single contaminant solution Laboratory batch
adsorption experiments
N.A. 121
Diatomite 0.15 nZVI 10 Hydrothermal reduction method Phosphate Adsorption 37.0 N.A. Single contaminant solution Laboratory batch
adsorption experiments
N.A. 122
Diatomite 0.05 nZVI 20~60 Impregnation-reduction Simazine Catalytic reduction 0.97 N.A. Single contaminant solution Laboratory beaker N.A. 123
Table 3 Studies on millimeter-sized nanocomposites with ceramic-based materials as hosts applied in water decontamination
Millimeter-scale
hosts
Appearance size
of hosts
Nanoparticles Size of
nanoparticles
Preparation methods Target pollutants Removal mecha-
nism
Adsorption capacity
(mg/g)
Treated water
matrix
Experimental scale Operation duration ref
Al2O3 spheres
Al2O3 sphere 3-5 mm Cu-Co
bi-mental
N.A.a Impregnation- carbothermal reduction COD of coal-gasification wastewater Catalytic ozonation 58.8% Coal-gasification wastewater Pilot-scale fixed-
bed, 5 m3/d
30 days 39
Al2O3 sphere 3-5 mm Fe N.A. Impregnation-calcination P-nitrophenol Catalytic ozonation TOC: 68.1% Single contaminant
solution
Laboratory fixed bed reactor 45 min 40
Al2O3 sphere 10.3 mm Fe2O3 N.A. Impregnation-calcination COD and color of distillery wastewater Catalytic ozonation COD: ~78%
Color: ~90%
Distillery wastewater Laboratory ozone
reaction column
30 min 124
γ-Al2O3 sphere 3-5 mm MnxCe1-xO2 ≤25nm Impregnation-calcination COD of coking wastewater Catalytic ozonation COD: >45.6% Bio-treated coking
wastewater
Full-scale applica-
tion, 100 m3/h
885 days 104
γ-Al2O3 sphere N.A. Mn-CeOx N.A. Impregnation-calcination Bromaminic acid Catalytic ozonation TOC: 64.7% Chemical industry
wastewater
Pilot-scale ozone
oxidation tower
22 days 106
γ-Al2O3 sphere 2 mm Cu-Mn oxides 5~10nm High-gravity-assisted im-pregnation Nitrobenzene Catalytic ozonation TOC: 81.7% Single contaminant
solution
Laboratory high-
gravity rotating
packed bed
60 min 125
γ-Al2O3 sphere 2 mm Ce-MnOx N.A. High-gravity-assisted im-pregnation Nitrobenzene Catalytic ozonation TOC: 98.3% Single contaminant
solution
Fixed-bed column 100 min 126
Ceramic membranes
ZrO2/TiO2 flat
ceramic mem-brane
Diameter 47 mm, thickness 2.5 mm FeOCl N.A. Impregnation-calcination Bisphenol A Fenton-like >82% Simulated wastewater Laboratory mem-
brane filtration
120 h 75
α-Al2O3 flat ceramic
membrane
Length 1046 mm, width 280 mm Mn oxides N.A. Impregnation-calcination DOC, PPCPs, EDCs Ozonation-ceramic membrane filtra-tion-biologically active carbon filtra-tion DOC:47.5%
PPCPs:98.5%
EDCs:99.8%
Secondary effluent
from WWTP
Pilot-scale,
20 m3/d
48 days 46
α-Al2O3 flat ceramic mem-brane Diameter 22 mm, thickness 2 mm Co3O4 N.A. Impregnation-calcination Sulfamethoxazole PMS fenton-like 59% Single contaminant
solution
Laboratory mem-
brane filtration
100 min 44
α-Al2O3 flat ceramic
membrane
Diameter 38 mm, thickness 2.5 mm Ti-Mn/TiO2 100nm Dip coating- calcination Dye Red-3BS and Aniline Catalytic ozonation CODCr:52.1% Simulated wastewater Laboratory mem-
brane filtration
6 h 93
Al2O3 spheres
α-Al2O3 tubular
ceramic membrane
Length 1016 mm, diameter 30 mm Ti-Mn/TiO2 20nm Dip coating- calcination Aquaculture wastewater Catalytic ozonation-membrane filtration CODMn: 38.0%
Color: 93.1%
Aquaculture wastewater Pilot-scale 240 min 45
α-Al2O3 tubular
ceramic membrane
Length 250 mm, outer diameter 10 mm, inner diam-eter 7 mm Ce/TiOx 8.3nm Sol-impregnation-calcination Diethyltoluamide Catalytic ozonation- membrane filtration 40% Single contaminant solution Laboratory mem-
brane filtration
30 min 47
Tubular ceramic
membrane
Length 1000 mm, diameter 30 mm TiO2 200~
500nm
Impregnation-calcination COD of
dyestuff wastewater
Membrane filtration- catalytic ozonation CODCr: >90% Secondary effluent
from dyestuff
WWTP
Pilot-scale, 10 t/d 30 days 43
AAO template Diameter 24 mm, thickness 0.06 mm Fe3O4 N.A. Solvothermal
method
Para-chlorobenzoic acid Heterogeneous Fenton N.A. Single contaminant
solution
Laboratory con-
tinuous flow-through
experiment
N.A. 66
Fig.2 Growth behavior and adsorption mechanism of confined and bulk zirconium phosphate[49]
Fig.3 Confined adsorption properties of milli-sized nanocomposites. (a) Changes in crystal phase of La(OH)3 for phosphate adsorption[63]; (b) The Donnan membrane effect of ion exchange resin for the enrichment and ion exchange of pollutants[11]; (c) The confinement-driven calcium phosphate partitioning crystallization and improved anti-pollution ability[65]
Fig.4 Confined catalytic oxidation in membrane pores. (a) Intensive utilization of HO· in confined space[66]; (b) Size exclusion effect of membrane pores on large molecular organic compounds and confined oxidation of small molecular organic compounds[75]
Fig.5 Millimeter-sized nanocomposites developed by Prof. Bingcai Pan’s research group. (a) Appearance of different composite materials; (b) Material samples; (c) Large-scale production of nanoscale composite materials; and (d) Fixed-bed water treatment engineering equipment
Fig.6 Catalytic ceramic membranes developed by Professor Xie Quan’s research group. (a) Tubular ceramic membranes; (b) membrane components; (c) flow diagrams and (d) on-site photos of pilot-scale equipment[91,92]
Fig.7 Flat ceramic membrane developed by Prof. Xihui Zhang’s research group. (a) flat ceramic membrane sheet; (b) ceramic membrane modules; (c) on-site photos and (d) process flow diagram of the pilot-scale ozone-ceramic membrane-BAC experimental equipment[95]
Fig.8 Mn-CeOx/γ-Al2O3 ozone catalysts developed by Professor Guoquan Zhang’s research group at Dalian University of Technology, with production photos and pilot-scale plant equipment diagram[106]
[1]
Zhang Q J, Pan B C, Chen X Q, Zhang W M, Pan B J, Zhang Q X, Lv L, Zhao X S. Sci. China Ser. B, 2008, 51(4): 379.

doi: 10.1007/s11426-007-0117-6
[2]
Chen L, Zhao X, Pan B C, Zhang W X, Hua M, Lv L, Zhang W M. J. Hazard. Mater., 2015, 284: 35.

doi: 10.1016/j.jhazmat.2014.10.048
[3]
Li Z G. Master Dissertation of Nanjing University, 2014.
(李志刚. 南京大学硕士论文, 2014).
[4]
Zhang Y Y, Pan B C, Shan C, Gao X A. Environ. Sci. Technol., 2016, 50(3): 1447.

doi: 10.1021/acs.est.5b04630
[5]
Zhang Y Y, Ahmed S, Zheng Z X, Liu F, Leung C F, Choy T Y, Kwok Y T, Pan B C, Lo I M C. Chem. Eng. J., 2021, 412: 128630.

doi: 10.1016/j.cej.2021.128630
[6]
Liu F, Shan C, Zhang X L, Zhang Y Y, Zhang W M, Pan B C. J. Hazard. Mater., 2017, 321: 290.

doi: 10.1016/j.jhazmat.2016.09.022
[7]
Sarkar S, Blaney L M, Gupta A, Ghosh D, SenGupta A K. React. Funct. Polym., 2007, 67(12): 1599.

doi: 10.1016/j.reactfunctpolym.2007.07.047
[8]
Smith R C, Li J Z, Padungthon S, Sengupta A K. Front. Environ. Sci. Eng., 2015, 9(5): 929.

doi: 10.1007/s11783-015-0795-9
[9]
Pan B C, Chen X Q, Zhang W M, Pan B J, Shen W, Zhang Q J, Du W, Zhang Q X, Chen J. Chinese Patent No.: ZL200510095177.5, 2005, 1.
(潘丙才, 陈新庆, 张炜铭, 潘丙军, 沈威, 张庆建, 杜伟, 张全兴, 陈金. ZL200510095177.5, 2005. 1).
[10]
Pan B J, Wu J, Pan B C, Lv L, Zhang W M, Xiao L L, Wang X S, Tao X C, Zheng S R. Water Res., 2009, 43(17): 4421.

doi: 10.1016/j.watres.2009.06.055
[11]
Pan B C, Xu J S, Wu B, Li Z G, Liu X T. Environ. Sci. Technol., 2013, 47(16): 9347.

doi: 10.1021/es401710q
[12]
Li H C, Shan C, Zhang Y Y, Cai J G, Zhang W M, Pan B C. ACS Appl. Mater. Interfaces, 2016, 8(5): 3012.

doi: 10.1021/acsami.5b09832
[13]
Zhang X L, Cheng C, Qian J S, Lu Z D, Pan S Y, Pan B C. Environ. Sci. Technol., 2017, 51(16): 9210.

doi: 10.1021/acs.est.7b01608
[14]
Zhang X L, Wang Y H, Chang X F, Wang P, Pan B C. Environ. Sci.: Nano, 2017, 4(3): 679.
[15]
Nie G Z, Pan B C, Zhang S J, Pan B J. J. Phys. Chem. C, 2013, 117(12): 6201.

doi: 10.1021/jp3119154
[16]
Rotzetter A C C, Kellenberger C R, Schumacher C M, Mora C, Grass R N, Loepfe M, Luechinger N A, Stark W J. Adv. Mater., 2013, 25(42): 6057.

doi: 10.1002/adma.v25.42
[17]
Teng C Y, Sheng Y J, Tsao H K. J. Chem. Phys., 2017, 146(1): 014904.

doi: 10.1063/1.4973608
[18]
Williams R J J, Hoppe C E, Zucchi I A, Romeo H E, Dell’Erba I E, GÓmez M L, Puig J, Leonardi A B. J. Colloid Interface Sci., 2014, 431: 223.

doi: 10.1016/j.jcis.2014.06.022
[19]
Chang Q G, Lin W, Ying W C. J. Hazard. Mater., 2010, 184(1/3): 515.

doi: 10.1016/j.jhazmat.2010.08.066
[20]
Gu Z M, Fang J, Deng B L. Environ. Sci. Technol., 2005, 39(10): 3833.

doi: 10.1021/es048179r
[21]
Savina I N, English C J, Whitby R L D, Zheng Y S, Leistner A, Mikhalovsky S V, Cundy A B. J. Hazard. Mater., 2011, 192(3): 1002.

doi: 10.1016/j.jhazmat.2011.06.003 pmid: 21715089
[22]
Liu Y, Gao Y, Zhao X, Shan C, Zhang X L, Pan B C. Acta Polym. Sin., 2018(7): 939.
(刘艳, 高洋, 赵昕, 单超, 张孝林, 潘丙才. 高分子学报, 2018(7): 939.).
[23]
Nguyen T V, Vigneswaran S, Ngo H H, Kandasamy J. J. Hazard. Mater., 2010, 182(1-3): 723.

doi: 10.1016/j.jhazmat.2010.03.071
[24]
Guo X J, Chen F H. Environ. Sci. Technol., 2005, 39(17): 6808.

doi: 10.1021/es048080k
[25]
Alipour A, Zarinabadi S, Azimi A, Mirzaei M. Int. J. Biol. Macromol., 2020, 151: 124.

doi: S0141-8130(19)40310-3 pmid: 32068056
[26]
Shoukat A, Wahid F, Khan T, Siddique M, Nasreen S, Yang G, Ullah M W, Khan R. Int. J. Biol. Macromol., 2019, 129: 965.

doi: S0141-8130(18)35642-3 pmid: 30738165
[27]
Mullick A, Neogi S. Ultrason. Sonochem., 2018, 45: 65.

doi: S1350-4177(18)30355-9 pmid: 29705326
[28]
Arcibar-Orozco J A, Avalos-Borja M, Rangel-Mendez J R. Environ. Sci. Technol., 2012, 46(17): 9577.

doi: 10.1021/es204696u
[29]
Ghanizadeh G, Ehrampoush M, Ghaneian M. J. Environ. Health Sci. Eng., 2010, 7: 145.
[30]
Sun Z, Zhang Y X, Guo S T, Shi J M, Shi C, Qu K Q, Qi H J, Huang Z H, Murugadoss V, Huang M N, Guo Z H. Adv. Compos. Hybrid Mater., 2022, 5(2): 1566.

doi: 10.1007/s42114-022-00477-4
[31]
Wang R X, Li M Z, Liu T, Li X Y, Zhou L, Tang L, Gong C Y, Gong X A, Yu K F, Li N, Zhu W K, Chen T. J. Clean. Prod., 2022, 364: 132654.

doi: 10.1016/j.jclepro.2022.132654
[32]
Dai Y J, Zhang N X, Xing C M, Cui Q X, Sun Q Y. Chemosphere, 2019, 223: 12.

doi: 10.1016/j.chemosphere.2019.01.161
[33]
Li X P, Wang C B, Zhang J G, Liu B, Liu J P, Chen G Y. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34: 1047.
(李湘萍, 王传斌, 张建光, 刘彬, 刘菊平, 陈冠益. 石油学报(石油加工), 2018, 34: 1047.).
[34]
Zeng Q, Gong C L, Qian C. Technol. Dev. Chem. Ind., 2023, 52(4): 8.
(曾奇, 龚长林, 钱程. 化工技术与开发, 2023, 52(4): 8.).
[35]
Jiang Y S, Jin W Q, Zhang J, Fang S S. J. Inorg. Mater., 2002, 17(6): 1301.
(蒋引珊, 金为群, 张军, 方送生. 无机材料学报, 2002, 17(6): 1301.).
[36]
Wang L J, Zheng S L, Shu F. J. Chin. Ceram. Soc., 2006, 34(7): 823.
(王利剑, 郑水林, 舒锋. 硅酸盐学报, 2006, 34(7): 823.).
[37]
Zhang G X, Liu Y Y, Zheng S L, Sun Z M. Adv. Powder Technol., 2021, 32(11): 4364.

doi: 10.1016/j.apt.2021.09.041
[38]
Zhang N, Ma Z X, Liu J. China Non-metallic Minerals Industry, 2010, (105): 23.
(张宁, 马正先, 刘江. 中国非金属矿工业导刊, 2010, (105): 23.).
[39]
Wei K J, Cao X X, Gu W C, Liang P, Huang X A, Zhang X Y. Environ. Sci. Technol., 2019, 53(12): 6917.

doi: 10.1021/acs.est.8b07132
[40]
Wang Z C, Xu T, Tang D D, Zhou Y, Zheng B J, Qiu Y C, He D K, Zeng X, Jiang R, Mao X H. Colloids Surf. A, 2023, 658: 130560.

doi: 10.1016/j.colsurfa.2022.130560
[41]
Qiao H, Meng Y F, Yu S Z, Yang Y X. Industrial Water Treatment, 2023, 43(03): 114.
(乔函, 孟一帆, 余思泽, 杨忆新. 工业水处理, 2023, 43(03): 114.).
[42]
He Z M, Lyu Z Y, Gu Q L, Zhang L, Wang J. Colloids Surf. A, 2019, 578: 123513.

doi: 10.1016/j.colsurfa.2019.05.074
[43]
Zhang J L, Yu H T, Quan X, Chen S, Zhang Y B. Chem. Eng. J., 2016, 301: 19.

doi: 10.1016/j.cej.2016.04.148
[44]
Bao Y P, Lee W J, Lim T T, Wang R, Hu X. Appl. Catal. B, 2019, 254: 37.

doi: 10.1016/j.apcatb.2019.04.081
[45]
Chen S, Yu J Q, Wang H, Yu H T, Quan X. Desalination, 2015, 363: 37.

doi: 10.1016/j.desal.2014.09.006
[46]
Chen R, Zhang K, Wang H, Wang X M, Zhang X H, Huang X. J. Membr. Sci., 2022, 652: 120509.

doi: 10.1016/j.memsci.2022.120509
[47]
Lee W J, Bao Y P, Guan C T, Hu X, Lim T T. Chem. Eng. J., 2021, 410: 128307.

doi: 10.1016/j.cej.2020.128307
[48]
Parija A, Waetzig G R, Andrews J L, Banerjee S. J. Phys. Chem. C, 2018, 122(45): 25709.

doi: 10.1021/acs.jpcc.8b04622
[49]
Zhang X L, Shen J L, Pan S Y, Qian J S, Pan B C. Adv. Funct. Mater., 2020, 30(12): 1909014.

doi: 10.1002/adfm.v30.12
[50]
Cantaert B, Beniash E, Meldrum F C. Chem. A Eur. J., 2013, 19(44): 14918.

doi: 10.1002/chem.v19.44
[51]
Wucher B, Yue W B, Kulak A N, Meldrum F C. Chem. Mater., 2007, 19(5): 1111.

doi: 10.1021/cm0620640
[52]
Tian C, Zhao J A, Zhang J, Chu S Q, Dang Z, Lin Z, Xing B S. Environ. Sci.: Nano, 2017, 4(11): 2134.
[53]
Yang D R, Feng J, Jiang L L, Wu X L, Sheng L Z, Jiang Y T, Wei T, Fan Z J. Adv. Funct. Mater., 2015, 25(45): 7080.

doi: 10.1002/adfm.v25.45
[54]
Pan B C, Han F C, Nie G Z, Wu B, He K, Lu L. Environ. Sci. Technol., 2014, 48(9): 5101.

doi: 10.1021/es5004044
[55]
Pan S Y, Zhang X L, Qian J S, Lu Z D, Hua M, Cheng C, Pan B C. Nanoscale, 2017, 9(48): 19154.

doi: 10.1039/C7NR06980D
[56]
Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P, Janardanan A, Yang Q, Radha B, Taniguchi T, Watanabe K. Science, 2018, 360: 1339.

doi: 10.1126/science.aat4191 pmid: 29930134
[57]
Lu C H, Hu C Z, Ritt C L, Hua X, Sun J Q, Xia H L, Liu Y Y, Li D W, Ma B W, Elimelech M, Qu J H. J. Am. Chem. Soc., 2021, 143(35): 14242.

doi: 10.1021/jacs.1c05765
[58]
Schulthess C P, Taylor R W, Ferreira D R. Soil Sci. Soc. Am. J., 2011, 75(2): 378.

doi: 10.2136/sssaj2010.0129nps
[59]
Kovaleva E G, Molochnikov L S, Antonov D O, Tambasova Stepanova D P, Hartmann M, Tsmokalyuk A N, Marek A, Smirnov A I. J. Phys. Chem. C, 2018, 122(35): 20527.

doi: 10.1021/acs.jpcc.8b04938
[60]
Jonchhe S, Pandey S, Emura T, Hidaka K, Hossain M A, Shrestha P, Sugiyama H, Endo M, Mao H B. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(38): 9539.

doi: 10.1073/pnas.1805939115
[61]
Sowers T D, Harrington J M, Polizzotto M L, Duckworth O W. Geochim. Cosmochim. Acta, 2017, 198: 194.

doi: 10.1016/j.gca.2016.10.049
[62]
van Genuchten C M, Addy S E A, Peña J, Gadgil A J. Environ. Sci. Technol., 2012, 46(2): 986.

doi: 10.1021/es201913a
[63]
Zhang Y Y, Wang M L, Gao X A, Qian J S, Pan B C. Environ. Sci. Technol., 2021, 55(1): 665.

doi: 10.1021/acs.est.0c05577
[64]
Cumbal L, SenGupta A K. Environ. Sci. Technol., 2005, 39(17): 6508.

doi: 10.1021/es050175e
[65]
Zhang Y Y, She X W, Gao X A, Shan C, Pan B C. Environ. Sci. Technol., 2019, 53(1): 365.

doi: 10.1021/acs.est.8b05177
[66]
Zhang S, Sun M, Hedtke T, Deshmukh A, Zhou X C, Weon S, Elimelech M, Kim J H. Environ. Sci. Technol., 2020, 54(17): 10868.

doi: 10.1021/acs.est.0c02192
[67]
Muñoz-Santiburcio D, Wittekindt C, Marx D. Nat. Commun., 2013, 4: 2349.

doi: 10.1038/ncomms3349 pmid: 23949229
[68]
Plecis A, Schoch R B, Renaud P. Nano Lett., 2005, 5(6): 1147.

doi: 10.1021/nl050265h
[69]
Argyris D, Cole D R, Striolo A. ACS Nano, 2010, 4(4): 2035.

doi: 10.1021/nn100251g
[70]
Kovaleva E G, Molochnikov L S, Venkatesan U, Marek A, Stepanova D P, Kozhikhova K V, Mironov M A, Smirnov A I. J. Phys. Chem. C, 2016, 120(5): 2703.

doi: 10.1021/acs.jpcc.5b10241
[71]
Kovaleva E G, Molochnikov L S, Tambasova D, Marek A, Chestnut M, Osipova V A, Antonov D O, Kirilyuk I A, Smirnov A I. J. Membr. Sci., 2020, 604: 118084.

doi: 10.1016/j.memsci.2020.118084
[72]
Zhang S, Hedtke T, Wang L, Wang X X, Cao T C, Elimelech M, Kim J H. Environ. Sci. Technol., 2021, 55(24): 16708.

doi: 10.1021/acs.est.1c06551
[73]
Di Trani N, Pimpinelli A, Grattoni A. ACS Appl. Mater. Interfaces, 2020, 12(10): 12246.

doi: 10.1021/acsami.9b19182
[74]
Yu Z H, Ji N, Li X Y, Zhang R, Qiao Y N, Xiong J, Liu J, Lu X B. Angew. Chem. Int. Ed., 2023, 62(3): e202213612.
[75]
Zhang S, Hedtke T, Zhu Q H, Sun M, Weon S, Zhao Y M, Stavitski E, Elimelech M, Kim J H. Environ. Sci. Technol., 2021, 55(13): 9266.

doi: 10.1021/acs.est.1c01391
[76]
Zhang Y Y, Zhang W X, Pan B C. Chemosphere, 2015, 141: 227.

doi: 10.1016/j.chemosphere.2015.07.023
[77]
Li Q H. Master Dissertation of Nanjing University, 2021.
(李求豪. 南京大学硕士论文, 2021).
[78]
Gao X. Master Dissertation of Nanjing University, 2019.
(高翔. 南京大学硕士论文, 2019).
[79]
Hua M, Xiao L L, Pan B C, Zhang Q X. Front. Environ. Sci. Eng., 2013, 7(3): 435.

doi: 10.1007/s11783-013-0508-1
[80]
Xu P Z. Master Dissertation of Nanjing University, 2020.
(许沛智. 南京大学硕士论文, 2020.).
[81]
Kim J H, Kim S B, Lee S H, Choi J W. Environ. Technol., 2018, 39(6): 770.

doi: 10.1080/09593330.2017.1310937
[82]
Zhang X L, Zhang L, Li Z X, Jiang Z, Zheng Q, Lin B, Pan B C. Environ. Sci. Technol., 2017, 51(22): 13363.

doi: 10.1021/acs.est.7b04164
[83]
Deng Z N, Cheng S K, Xu N A, Zhang X L, Pan B C. ACS EST Eng., 2023, 3(2): 226.

doi: 10.1021/acsestengg.2c00284
[84]
Cai J G, Zhang Y Y, Pan B C, Zhang W M, Lv L, Zhang Q X. Water Res., 2016, 102: 109.

doi: 10.1016/j.watres.2016.06.030
[85]
Chinese Academy of Sciences. News, 2015-11-03.
(中国科学院. 合肥研究院智能所“天然矿物纳米复合除氟剂饮用水除氟技术”通过鉴定. 2015-11-03[2023-05-01]. https://www.cas.cn/yx/201511/t20151103_4453117.shtml).
[86]
Sylvester P, Westerhoff P, Möller T, Badruzzaman M, Boyd O. Environ. Eng. Sci., 2007, 24(1): 104.

doi: 10.1089/ees.2007.24.104
[87]
Deng Z N, Fang Z Y, Liu A R, Xu N, Zhang X L. Sci. Total Environ., 2021, 777: 146103.

doi: 10.1016/j.scitotenv.2021.146103
[88]
Pranudta A, Chanthapon N, Kidkhunthod P, El-Moselhy M M, Nguyen T T, Padungthon S. J. Environ. Chem. Eng., 2021, 9(5): 106282.

doi: 10.1016/j.jece.2021.106282
[89]
Science and Technology Development Center of the Ministry of Education. Appraisal of achievements, 2013-09-26.
(教育部科技发展中心. 基于环境纳米复合材料的重金属废水深度处理与资源化新技术. 2013-09-26[2023-05-01]. http://www.cutech.edu.cn/cn/gxzxjdcgjj/arwlyfl/ssjhxm/2013/09/1380130862897976.htm).
[90]
Huang M J, Li Y S, Zhang C Q, Yu H Q. Proc. Natl. Acad. Sci.U.S.A., 2022, 119: e2202682119.

doi: 10.1073/pnas.2202682119
[91]
Zhu Y Q, Chen S, Quan X, Zhang Y B, Gao C, Feng Y J. J. Membr. Sci., 2013, 431: 197.

doi: 10.1016/j.memsci.2012.12.048
[92]
Zhu Y Q. Doctoral Dissertation of Dalian University of Technology, 2013.
(朱云庆. 大连理工大学博士论文, 2013).
[93]
Zhang J L. Doctoral Dissertation of Dalian University of Technology, 2017.
(张建琳. 大连理工大学博士论文, 2017).
[94]
Yu J Q. Master Dissertation of Dalian University of Technology, 2015.
(于金旗. 大连理工大学硕士论文, 2015.).
[95]
Zhang K. Doctoral Dissertation of Tsinghua University, 2020.
(张凯. 清华大学博士论文, 2020.).
[96]
Corneal L M, Masten S J, Davies S H R, Tarabara V V, Byun S, Baumann M J. J. Membr. Sci., 2010, 360(1/2): 292.

doi: 10.1016/j.memsci.2010.05.026
[97]
Moslemi M, Davies S H, Masten S J. Water Res., 2011, 45(17): 5529.

doi: 10.1016/j.watres.2011.08.015
[98]
Wang X Y, Davies S H, Masten S J. Sep. Purif. Technol., 2017, 186: 182.

doi: 10.1016/j.seppur.2017.04.055
[99]
Kim J, Shan W Q, Davies S H R, Baumann M J, Masten S J, Tarabara V V. Environ. Sci. Technol., 2009, 43(14): 5488.

doi: 10.1021/es900342q
[100]
Karnik B S, Davies S H, Baumann M J, Masten S J. Environ. Sci. Technol., 2005, 39(19): 7656.

doi: 10.1021/es0503938
[101]
Byun S, Davies S H, Alpatova A L, Corneal L M, Baumann M J, Tarabara V V, Masten S J. Water Res., 2011, 45(1): 163.

doi: 10.1016/j.watres.2010.08.031 pmid: 20822791
[102]
Alpatova A L, Davies S H, Masten S J. Sep. Purif. Technol., 2013, 107: 179.

doi: 10.1016/j.seppur.2013.01.013
[103]
He C. Doctoral Dissertation of China University of Mining & Technology-Beijing, 2021.
(何灿. 中国矿业大学 (北京) 博士论文, 2021.).
[104]
He C, Wang J B, Wang C R, Zhang C H, Hou P, Xu X Y. Water Res., 2020, 183: 116090.

doi: 10.1016/j.watres.2020.116090
[105]
He C, Huang Q, Zhang L L, Luo H L, Xue T. Industrial Water Treatment, 2019, 39(11): 107.
(何灿, 黄祁, 张力磊, 罗华霖, 薛通. 工业水处理, 2019, 39(11): 107.).

doi: 10.11894/iwt.2018-1061
[106]
Wu Z W, Zhang G Q, Zhang R Y, Yang F L. Ind. Eng. Chem. Res., 2018, 57(6): 1943.

doi: 10.1021/acs.iecr.7b04516
[107]
Pan B J, Xiao L L, Nie G Z, Pan B C, Wu J, Lv L, Zhang W M, Zheng S R. J. Environ. Monit., 2010, 12(1): 305.

doi: 10.1039/B913827G
[108]
Shan C, Dong H, Huang P, Hua M, Liu Y, Gao G D, Zhang W M, Lv L, Pan B C. Chem. Eng. J., 2019, 360: 982.

doi: 10.1016/j.cej.2018.07.051
[109]
Guan X H, Liu F, Zhang W M, Pan B C. Ind. Eng. Chem. Res., 2017, 56(18): 5309.

doi: 10.1021/acs.iecr.7b00507
[110]
Liu B M, Pan S L, Liu Z Y, Li X, Zhang X, Xu Y H, Sun Y J, Yu Y, Zheng H L. J. Hazard. Mater., 2020, 386: 121969.

doi: 10.1016/j.jhazmat.2019.121969
[111]
Blaney L M, Cinar S, SenGupta A K. Water Res., 2007, 41(7): 1603.

pmid: 17306856
[112]
Sengupta S, Pandit A. Water Res., 2011, 45(11): 3318.

doi: 10.1016/j.watres.2011.03.044
[113]
Lee S Y, Kang D, Jeong S, Do H T, Kim J H. ACS Omega, 2020, 5(8): 4233.

doi: 10.1021/acsomega.9b04127
[114]
Wang Y, Xie X M, Chen X L, Huang C H, Yang S. J. Hazard. Mater., 2020, 396: 122626.

doi: 10.1016/j.jhazmat.2020.122626
[115]
Chan H F, Shi C C, Wu Z X, Sun S H, Zhang S K, Yu Z H, He M H, Chen G X, Wan X F, Tian J F. J. Colloid Interface Sci., 2022, 608: 1414.

doi: 10.1016/j.jcis.2021.10.028
[116]
Suazo-Hernández J, Sepúlveda P, Manquián-Cerda K, Ramírez-Tagle R, Rubio M A, Bolan N, Sarkar B, Arancibia-Miranda N. J. Hazard. Mater., 2019, 373: 810.

doi: S0304-3894(19)30407-8 pmid: 30974329
[117]
Guaya D A, Valderrama C, Farran A, Armijos C, Cortina J L. Chem. Eng. J., 2015, 271: 204.

doi: 10.1016/j.cej.2015.03.003
[118]
He Y H, Lin H, Dong Y B, Wang L. Appl. Surf. Sci., 2017, 426: 995.

doi: 10.1016/j.apsusc.2017.07.272
[119]
Shi W M, Fu Y W, Jiang W, Ye Y Y, Kang J X, Liu D Q, Ren Y Z, Li D S, Luo C G, Xu Z. Chem. Eng. J., 2019, 357: 33.

doi: 10.1016/j.cej.2018.08.003
[120]
Jang M, Min S H, Park J K, Tlachac E J. Environ. Sci. Technol., 2007, 41(9): 3322.

doi: 10.1021/es062359e
[121]
Yuan P, Liu D, Fan M D, Yang D, Zhu R L, Ge F, Zhu J X, He H P. J. Hazard. Mater., 2010, 173(1/3): 614.

doi: 10.1016/j.jhazmat.2009.08.129
[122]
Wang J X, Zhang G Q, Qiao S, Zhou J T. Chem. Eng. J., 2021, 412: 128696.

doi: 10.1016/j.cej.2021.128696
[123]
Sun Z M, Zheng S L, Ayoko G A, Frost R L, Xi Y F. J. Hazard. Mater., 2013, 263: 768.

doi: 10.1016/j.jhazmat.2013.10.045
[124]
Sreethawong T, Chavadej S. J. Hazard. Mater., 2008, 155(3): 486.

doi: 10.1016/j.jhazmat.2007.11.091 pmid: 18179871
[125]
Shao S J, Lei D, Song Y, Liang L N, Liu Y Z, Jiao W Z. Ind. Eng. Chem. Res., 2021, 60(5): 2123.

doi: 10.1021/acs.iecr.0c05751
[126]
Shao S J, Li Z X, Zhang J W, Gao K C, Liu Y Z, Jiao W Z. Chem. Eng. Sci., 2022, 248: 117246.

doi: 10.1016/j.ces.2021.117246
[1] Xiaoyu Shen, Zhongtian Du, Bairui Guo, Zhongxu Guo, Changhai Liang. Selective Oxidative Lactonization of 1,6-Hexanediol into ε-Caprolactone [J]. Progress in Chemistry, 2023, 35(8): 1191-1198.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[5] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[6] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[7] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[8] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[9] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[10] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[11] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[12] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[13] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[14] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[15] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.