中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (1): 18-26 DOI: 10.7536/PC230507 Previous Articles   Next Articles

• Review •

Application of Nanozymes in the Treatment of Brain Diseases

Ziying Meng1, Jie Wang1, Jiapu Wang1, Yan Wei1,2, Di Huang1,2, Ziwei Liang1,2()   

  1. 1 College of Biomedical Engineering, Taiyuan University of Technology, Research Center for Nano-Biomaterials & Regenerative Medicine, Taiyuan 030024, China
    2 Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: liangziweiguozhong@163.com
  • Supported by:
    National Natural Science Foundation of China(82103147); National Natural Science Foundation of China(12272253); Natural Science Foundation of Shanxi Province, China(20210302124007); Natural Science Foundation of Shanxi Province, China(202203021221047); Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-AT008); Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-AT009)
Richhtml ( 61 ) PDF ( 226 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, nanozymes, as a new generation of artificial enzymes, have gradually entered the medical field due to their multi-enzyme activity, high stability and targeting ability, which are superior to natural enzymes. Moreover, nanozymes have been applied to the treatment of a variety of diseases and cancer because of their regulatory effect on reactive oxygen species. Brain diseases, as one of the highest mortality diseases, are prone to produce complex inflammatory responses due to excessive reactive oxygen species in the pathological environment. Therefore, the application of nanozymes in the brain environment may become an effective means of monitoring and treatment of brain diseases. This article reviews the principles of nanozymes in the treatment of brain diseases and the current research status in this field in recent years, including nanozymes inducing cancer cell death by regulating the level of reactive oxygen species, nanozymes assisting traditional anticancer therapy, nanozymes using membrane proteins to monitor brain cancer, and their applications in traumatic brain injury, stroke, brain degenerative diseases, cerebral malaria and epilepsy. At the end of this text, the problems of its application in clinical treatment are discussed.

Contents

1 Introduction

2 Development of researches about nanozymes

3 Application of nanozymes in the treatment of brain cancer and brain diseases

3.1 Nanozymes in brain cancer

3.2 Nanozymes in degenerative disease

3.3 Nanozymes in other brain diseases

4 Conclusion and outlook

Table 1 Advantages of some nanozymes compared with native enzymes[15???~19]
Fig. 1 Nanozymes are involved in brain cancer therapy via ROS
[1]
Quader S, Kataoka K, Cabral H. Adv. Drug Deliv. Rev., 2022, 182: 114115.

doi: 10.1016/j.addr.2022.114115
[2]
Jiang F, Yang J M, Zhang Y T, Dong M, Wang S X, Zhang Q Y, Liu F F, Zhang K, Zhang C. Nat. Rev. Cardiol., 2014, 11(7): 413.

doi: 10.1038/nrcardio.2014.59 pmid: 24776703
[3]
Kuriakose D, Xiao Z C. Int. J. Mol. Sci., 2020, 21(20): 7609.

doi: 10.3390/ijms21207609
[4]
Hou Y X, Zhang R F, Yan X, Fan K L. Sci. Sin. Vitae, 2020, 50(3): 311.

doi: 10.1360/SSV-2019-0216
(侯亚欣, 张若飞, 阎锡蕴, 范克龙. 中国科学(生命科学), 2020, 50(3): 311.)
[5]
Wei H, Gao L Z, Fan K L, Liu J W, He J Y, Qu X G, Dong S J, Wang E K, Yan X Y. Nano Today, 2021, 40: 101269.

doi: 10.1016/j.nantod.2021.101269
[6]
Jansman M M T, Hosta-Rigau L. Catalysts, 2019, 9(8): 691.

doi: 10.3390/catal9080691
[7]
Zhu M Y, Dai Y Q, Wu Y N, Liu K, Qi X M, Sun Y M. Nanotechnology, 2018, 29(46): 465704.

doi: 10.1088/1361-6528/aaddc2
[8]
Sharifi M, Hosseinali S H, Yousefvand P, Salihi A, Shekha M S, Aziz F M, JouyaTalaei A, Hasan A, Falahati M. Mater. Sci. Eng. C, 2020, 108: 110422.

doi: 10.1016/j.msec.2019.110422
[9]
Tang R Y, Xia X M, Zhang X, Jiang H, Wang B H, Zhang P L, Zhang Y J, Tang Y X, Zhou Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2022, 266: 120467.
[10]
Ding H, Hu B, Zhang B, Zhang H, Yan X Y, Nie G H, Liang M M. Nano Res., 2021, 14(3): 570.

doi: 10.1007/s12274-020-3053-9
[11]
Sun H J, Zhou Y, Ren J S, Qu X G. Angew. Chem. Int. Ed., 2018, 57(30): 9224.

doi: 10.1002/anie.v57.30
[12]
Niu X H, Li X, Lyu Z Y, Pan J M, Ding S C, Ruan X F, Zhu W L, Du D, Lin Y H. Chem. Commun., 2020, 56(77): 11338.

doi: 10.1039/D0CC04890A
[13]
Zhang R F, Fan K L, Yan X Y. Sci. China Life Sci., 2020, 63(8): 1183.
[14]
Jiang D W, Ni D L, Rosenkrans Z T, Huang P, Yan X Y, Cai W B. Chem. Soc. Rev., 2019, 48(14): 3683.

doi: 10.1039/C8CS00718G
[15]
Lin Y H, Ren J S, Qu X G. Acc. Chem. Res., 2014, 47(4): 1097.

doi: 10.1021/ar400250z
[16]
Wang X X, Wu Q, Shan Z, Huang Q M. Biosens. Bioelectron., 2011, 26(8): 3614.

doi: 10.1016/j.bios.2011.02.014
[17]
Ji S F, Jiang B, Hao H G, Chen Y J, Dong J C, Mao Y, Zhang Z D, Gao R, Chen W X, Zhang R F, Liang Q, Li H J, Liu S H, Wang Y, Zhang Q H, Gu L, Duan D M, Liang M M, Wang D S, Yan X Y, Li Y D. Nat. Catal., 2021, 4(5): 407.

doi: 10.1038/s41929-021-00609-x
[18]
Jiao L, Xu W Q, Zhang Y, Wu Y, Gu W L, Ge X X, Chen B B, Zhu C Z, Guo S J. Nano Today, 2020, 35: 100971.

doi: 10.1016/j.nantod.2020.100971
[19]
Zhang S F, Li Y H, Sun S, Liu L, Mu X Y, Liu S H, Jiao M L, Chen X Z, Chen K, Ma H Z, Li T, Liu X Y, Wang H, Zhang J N, Yang J, Zhang X D. Nat. Commun., 2022, 13: 4744.

doi: 10.1038/s41467-022-32411-z
[20]
Manea F, Houillon F B, Pasquato L, Scrimin P. Angew. Chem. Int. Ed., 2004, 43(45): 6165.

doi: 10.1002/anie.v43:45
[21]
Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, Yan X Y. Nat. Nanotechnol., 2007, 2(9): 577.

doi: 10.1038/nnano.2007.260
[22]
Gao L Z, Liang M M, Wen T, Wei H, Zhang Y, Fan K L, Jiang B, Qu X G, Gu N, Pang D W, Xu H Y, Yan X Y. China Terminology, 2020, 22(06): 21.
(高利增, 梁敏敏, 温涛, 魏辉, 张宇, 范克龙, 江冰, 曲晓刚, 顾宁, 庞代文, 许海燕, 阎锡蕴. 中国科技术语, 2020, 22(06): 21.)
[23]
Wei H, Wang E K. Chem. Soc. Rev., 2013, 42(14): 6060.

doi: 10.1039/c3cs35486e
[24]
Gao L Z, Chen L, Zhang R F, Yan X Y. Sci. Sin. Chim., 2022, 52(09): 1649.

doi: 10.1360/SSC-2022-0088
(高利增, 陈雷, 张若飞, 阎锡蕴. 中国科学:化学, 2022, 52(09): 1649.)
[25]
Fan K L, Gao L Z, Wei H, Jiang B, Wang D J, Zhang R F, He J Y, Meng X Q, Wang Z R, Fan H Z, Wen T, Duan D M, Chen L, Jiang W, Lu Y, Jiang B, Wei Y H, Li W, Yuan Y, Dong H J, Zhang L, Hong C Y, Zhang Z X, Cheng M M, Geng X, Hou T Y, Hou Y X, Li J R, Tang G H, Zhao Y, Zhao H Q, Zhang S, Xie J Y, Zhou Z J, Ren J S, Huang X L, Gao X F, Liang M M, Zhang Y, Xu H Y, Qu X G, Yan X Y. Progress in Chemistry, 2023, 35(1): 1.
(范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 化学进展, 2023, 35(01): 1.).
[26]
Cheng H J, Zhang L, He J, Guo W J, Zhou Z Y, Zhang X J, Nie S M, Wei H. Anal. Chem., 2016, 88(10): 5489.

doi: 10.1021/acs.analchem.6b00975
[27]
Liu J, Zhang W, Peng M H, Ren G Y, Guan L H, Li K, Lin Y Q. ACS Applied Materials & Interfaces., 2020, 12(26): 29631.
[28]
Wang C, Wang M C, Zhang W, Liu J, Lu M J, Li K, Lin Y Q. Anal. Chem., 2020, 92(1): 662.

doi: 10.1021/acs.analchem.9b04931
[29]
Reczek C R, Chandel N S. Annu. Rev. Cancer Biol., 2017, 1: 79.

doi: 10.1146/annurev-cancerbio-041916-065808
[30]
Kwon S, Ko H, You D G, Kataoka K, Park J H. Acc. Chem. Res., 2019, 52(7): 1771.

doi: 10.1021/acs.accounts.9b00136
[31]
Aguilera-Márquez J D R, de Dios-Figueroa G T, Reza-Saldivar E E, Camacho-Villegas T A, Canales-Aguirre A A, Lugo-Fabres P H. Neurol. Perspect., 2022, 2: S31.
[32]
Mansur A A P, Mansur H S, Carvalho S M. Catal. Today, 2022, 388/389: 187.

doi: 10.1016/j.cattod.2020.06.083
[33]
Zou Z Z, Chang H C, Li H L, Wang S M. Apoptosis, 2017, 22(11): 1321.

doi: 10.1007/s10495-017-1424-9
[34]
Liu S L, Zhang W, Chen Q Q, Hou J X, Wang J R, Zhong Y X, Wang X Y, Jiang W X, Ran H T, Guo D J. Nanoscale, 2021, 13(33): 14049.

doi: 10.1039/D1NR01449H
[35]
Mansur A A P, Carvalho S M, Oliveira L C A, Souza-Fagundes E M, Lobato Z I P, Leite M F, Mansur H S. Pharmaceutics, 2022, 14(10): 2223.

doi: 10.3390/pharmaceutics14102223
[36]
Fan K L, Xi J Q, Fan L, Wang P X, Zhu C H, Tang Y, Xu X D, Liang M M, Jiang B, Yan X Y, Gao L Z. Nat. Commun., 2018, 9: 1440.

doi: 10.1038/s41467-018-03903-8
[37]
Muhammad P, Hanif S, Li J, Guller A, Rehman F U, Ismail M, Zhang D, Yan X, Fan K, Shi B. Nano Today, 2022, 45:101530.

doi: 10.1016/j.nantod.2022.101530
[38]
Wang S R, Wang Z Y, Li Z Y, Zhang X G, Zhang H T, Zhang T, Meng X X, Sheng F G, Hou Y L. Sci. Adv., 2022, 8(21): eabn3883.

doi: 10.1126/sciadv.abn3883
[39]
Zhu X F, Chen X, Huo D L, Cen J Q, Jia Z, Liu Y A, Liu J. Biomaterials Science., 2021, 9(15): 5330.

doi: 10.1039/D1BM00667C
[40]
Voth B, Nagasawa D T, Pelargos P E, Chung L K, Ung N, Gopen Q, Tenn S, Kamei D T, Yang I. Journal Of Clinical Neuroscience., 2015, 22(7): 1071.

doi: 10.1016/j.jocn.2015.02.002
[41]
Daniels T R, Delgado T, Helguera G, Penichet M L. Clin. Immunol., 2006, 121(2): 159.

doi: 10.1016/j.clim.2006.06.006 pmid: 16920030
[42]
Weerathunge P, Pooja D, Singh M, Kulhari H, Mayes E L H, Bansal V, Ramanathan R. Sens. Actuat. B Chem., 2019, 297: 126737.

doi: 10.1016/j.snb.2019.126737
[43]
Kip Ç, Akbay E, Gökçal B, Savaş B O, Ali Onur M, Tuncel A. Colloids Surf. A Physicochem. Eng. Aspects, 2020, 598: 124812.

doi: 10.1016/j.colsurfa.2020.124812
[44]
Chen Q S, Liu Y B, Liu J B, Liu J W. Chem. Eur. J., 2020, 26(70): 16659.

doi: 10.1002/chem.v26.70
[45]
Huang W, Xia Q, Zheng F, Zhao X, Ge F, Xiao J, Liu Z, Shen Y, Ye K, Wang D, Li Y. JAD, 2023, 221064.
[46]
Ren C X, Li D D, Zhou Q X, Hu X G. Biomaterials, 2020, 232: 119752.

doi: 10.1016/j.biomaterials.2019.119752
[47]
Gong Y C, Huang A L, Guo X, Jia Z, Chen X, Zhu X F, Xia Y, Liu J, Xu Y, Qin X Y. Chem. Eng. J., 2021, 418: 129345.

doi: 10.1016/j.cej.2021.129345
[48]
Jia Z, Yuan X Y, Wei J A, Guo X, Gong Y C, Li J, Zhou H, Zhang L, Liu J. ACS Appl. Mater. Interfaces, 2021, 13(42): 49602.

doi: 10.1021/acsami.1c06687
[49]
Bai Z T, Ge K Z, Fu J J, Yu D H, Hua Z Y, Xue S L, Li Z, Sheng W W, Wu X N, Gao F F, Geng D Q, Gao F L. Chem. Eng. J., 2023, 465: 142955.

doi: 10.1016/j.cej.2023.142955
[50]
Isaev N K, Stelmashook E V, Genrikhs E E. Rev. Neurosci., 2020, 31(3): 233.

doi: 10.1515/revneuro-2019-0052
[51]
Du C J, Feng W, Dai X Y, Wang J H, Geng D Y, Li X D, Chen Y, Zhang J. Small, 2022, 18(39): 2203031.

doi: 10.1002/smll.v18.39
[52]
Lyu Z Y, Ding S C, Zhang N, Zhou Y, Cheng N, Wang M Y, Xu M J, Feng Z X, Niu X H, Cheng Y, Zhang C, Du D, Lin Y H. Research, 2020, 2020: 4724505.
[53]
Padilla-Godínez F J, Ruiz-Ortega L I, Guerra-Crespo M. Cells, 2022, 11(21): 3445.

doi: 10.3390/cells11213445
[54]
Singh N, Savanur M A, Srivastava S, D'Silva P, Mugesh G. Angewandte Chemie Int. Ed., 2017, 56(45): 14267.

doi: 10.1002/anie.v56.45
[55]
Wang W, Zheng J Y, Zhou H, Liu Q, Jia L, Zhang X M, Ge D T, Shi W, Sun Y N. ACS Appl. Mater. Interfaces, 2022, 14(29): 32901.

doi: 10.1021/acsami.2c06981
[56]
Li L H, Lu Y, Xu X Y, Yang X F, Chen L L, Jiang C M, Wang Y, Hu W Y, Wei X M, Yang Z M. Adv. Healthcare Mater., 2021, 10(13): 2100316.

doi: 10.1002/adhm.v10.13
[57]
Zhu Z Q, Gong L B, Miao X Y, Chen C Y, Su S. Biosensors, 2022, 12(5): 260.

doi: 10.3390/bios12050260
[58]
Xia Z H, Gao M M, Sheng P, Shen M M, Zhao L, Gao L Z, Yan B C. Int. J. Mol. Sci., 2022, 23(12): 6463.

doi: 10.3390/ijms23126463
[59]
Yu D Q, Ma M M, Liu Z W, Pi Z F, Du X B, Ren J S, Qu X G. Biomaterials, 2020, 255: 120160.

doi: 10.1016/j.biomaterials.2020.120160
[60]
Wang C, Ren G Y, Yuan B B, Zhang W, Lu M J, Liu J, Li K, Lin Y Q. Anal. Chem., 2020, 92(11): 7822.

doi: 10.1021/acs.analchem.0c01028
[61]
Abdul-Muneer P M, Chandra N, Haorah J. Mol. Neurobiol., 2015, 51(3): 966.

doi: 10.1007/s12035-014-8752-3 pmid: 24865512
[62]
Bains M, Hall E D. Biochim. Biophys. Acta BBA Mol. Basis Dis., 2012, 1822(5): 675.
[63]
Mu X Y, He H, Wang J Y, Long W, Li Q F, Liu H L, Gao Y L, Ouyang L F, Ren Q J, Sun S, Wang J Y, Yang J, Liu Q, Sun Y M, Liu C L, Zhang X D, Hu W P. Nano Lett., 2019, 19(7): 4527.

doi: 10.1021/acs.nanolett.9b01333
[64]
Mu X Y, Wang J Y, He H, Li Q F, Yang B, Wang J H, Liu H L, Gao Y L, Ouyang L, Sun S, Ren Q J, Shi X J, Hao W T, Fei Q M, Yang J, Li L L, Vest R, Wyss-Coray T, Luo J, Zhang X D. Sci. Adv., 2021, 7(46): eabk1210.

doi: 10.1126/sciadv.abk1210
[65]
Yan R J, Sun S, Yang J, Long W, Wang J Y, Mu X Y, Li Q F, Hao W T, Zhang S F, Liu H L, Gao Y L, Ouyang L F, Chen J C, Liu S J, Zhang X D, Ming D. ACS Nano, 2019, 13(10): 11552.

doi: 10.1021/acsnano.9b05075
[66]
Zhang S F, Liu Y, Sun S, Wang J Y, Li Q F, Yan R J, Gao Y L, Liu H L, Liu S J, Hao W T, Dai H T, Liu C L, Sun Y M, Long W, Mu X Y, Zhang X D. Theranostics, 2021, 11(6): 2806.

doi: 10.7150/thno.51912
[67]
He H, Shi X J, Wang J Y, Wang X J, Wang Q, Yu D Y, Ge B S, Zhang X D, Huang F. ACS Appl. Mater. Interfaces, 2020, 12(1): 209.

doi: 10.1021/acsami.9b17509
[68]
Xi J Q, Zhang R F, Wang L M, Xu W, Liang Q, Li J Y, Jiang J, Yang Y L, Yan X Y, Fan K L, Gao L Z. Adv. Funct. Mater., 2021, 31(9): 2007130.

doi: 10.1002/adfm.v31.9
[69]
Liu Y S, Wang X J, Li X Z, Qiao S S, Huang G D, Hermann D M, Doeppner T R, Zeng M L, Liu W, Xu G L, Ren L J, Zhang Y, Liu W L, Casals E, Li W P, Wang Y C. ACS Appl. Mater. Interfaces, 2021, 13(39): 46213.

doi: 10.1021/acsami.1c06449
[70]
Huang Z X, Qian K, Chen J, Qi Y, Yifeng E, Liang J, Zhao L. Acta Biomater., 2022, 144: 142.

doi: 10.1016/j.actbio.2022.03.018
[71]
Huang G N, Zang J K, He L Z, Zhu H L, Huang J R, Yuan Z W, Chen T F, Xu A D. ACS Nano, 2022, 16(1): 431.

doi: 10.1021/acsnano.1c07205
[72]
Tian R Z, Ma H Y, Ye W, Li Y J, Wang S P, Zhang Z R, Liu S D, Zang M S, Hou J X, Xu J Y, Luo Q, Sun H C, Bai F Q, Yang Y, Liu J Q. Adv. Funct. Mater., 2022, 32(36): 2204025.

doi: 10.1002/adfm.v32.36
[73]
Yan B C, Cao J W, Liu J J, Gu Y H, Xu Z B, Li D D, Gao L Z. ACS Biomater. Sci. Eng., 2021, 7(1): 299.

doi: 10.1021/acsbiomaterials.0c01312
[74]
Feng L S, Dou C R, Xia Y G, Li B H, Zhao M Y, Yu P, Zheng Y Y, El-Toni A M, Atta N F, Galal A, Cheng Y S, Cai X J, Wang Y, Zhang F. ACS Nano, 2021, 15(2): 2263.

doi: 10.1021/acsnano.0c07973
[75]
Zhao Q Q, Du W X, Zhou L L, Wu J R, Zhang X X, Wei X E, Wang S J, Huang Y, Li Y H. Pharmaceutics, 2022, 14(6): 1122.

doi: 10.3390/pharmaceutics14061122
[76]
Zhao S, Duan H X, Yang Y L, Yan X Y, Fan K L. Nano Lett., 2019, 19(12): 8887.

doi: 10.1021/acs.nanolett.9b03774
[77]
Prabhu P, Suryavanshi S, Pathak S, Patra A, Sharma S, Patravale V. Int. J. Pharm., 2016, 513(1/2): 504.
[78]
Stafstrom C E, Carmant L. Cold Spring Harbor Perspectives In Medicine., 2015, 5(6): 022426.
[79]
Wang N, Zhang M R, Ma Y P, Liu S Y, Liu Q Q, Liao Y H, Ding F, Tian X M. Journal Of Nanoparticle Research., 2021, 23(12): 266.

doi: 10.1007/s11051-021-05381-4
[1] Wenhao Luo, Rui Yuan, Jinyuan Sun, Lianqun Zhou, Xiaohe Luo, Yang Luo. Metal-Organic Framework-Based Nanozymes for Clinical Applications [J]. Progress in Chemistry, 2023, 35(9): 1389-1398.
[2] Shiping Jin, Ying Sun, Xueqin Zhang. Oxygen Permeability of Polymer Hydrogel Materials [J]. Progress in Chemistry, 2023, 35(9): 1304-1312.
[3] Fangfang Guo, Shaodong Xie. Formation Mechanisms of Secondary Sulfate and Nitrate in PM2.5 [J]. Progress in Chemistry, 2023, 35(9): 1313-1326.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Mengru Cao, Zhiwei Ye, Jun Wang, Xiaojin Zhang, Pengfei Lin, Chao Chen. Occurrence of N-Nitrosamines as Harmful Impurities in Pharmaceuticals [J]. Progress in Chemistry, 2023, 35(12): 1881-1894.
[6] Qianqian Su, Yu Sun, Wenwen Zhang, Zhengde Peng, Weiping Qian. Preparation, Application and Prospect of RIfS Interference Substrates [J]. Progress in Chemistry, 2023, 35(12): 1793-1806.
[7] Song Yilong, Zhao Shuang, Li Kunfeng, Fei Zhifang, Chen Guobing, Yang Zichun. Preparation and Application of Direct Electrospun Fibrous Sponges [J]. Progress in Chemistry, 2023, 35(11): 1686-1700.
[8] Chubin Zhao, Hailin Wang. Research Methods for Liquid-Liquid Phase Separation of Biological Macromolecules [J]. Progress in Chemistry, 2023, 35(10): 1486-1491.
[9] Jiliang Guo, Jianfei Peng, Ainan Song, Jinsheng Zhang, Zhuofei Du, Hongjun Mao. Studies on the Formation of Secondary Organic Aerosol from Vehicle Exhaust [J]. Progress in Chemistry, 2023, 35(1): 177-188.
[10] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[11] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[12] Hui Zhang, Shanshan Wang, Jinshan Yu. Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties [J]. Progress in Chemistry, 2022, 34(6): 1440-1452.
[13] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[14] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[15] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.